精英家教网 > 高中数学 > 题目详情
20.函数g(x)=tan($\frac{π}{3}$x-$\frac{π}{6}$)的最小正周期为M,则f(x)=Msin(2x-$\frac{π}{6}$)在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{3}{2}$,3],.

分析 利用正切函数的周期性求得M,再利用正弦函数的定义域和值域,求得f(x)=Msin(2x-$\frac{π}{6}$)在区间[0,$\frac{π}{2}$]上的值域.

解答 解:函数g(x)=tan($\frac{π}{3}$x-$\frac{π}{6}$)的最小正周期为M=$\frac{π}{\frac{π}{3}}$=3,
当x∈[0,$\frac{π}{2}$],2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],∴Msin(2x-$\frac{π}{6}$)=3sin(2x-$\frac{π}{6}$)∈[-$\frac{3}{2}$,3],
∴f(x)=Msin(2x-$\frac{π}{6}$)在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{3}{2}$,3],
故答案为:[-$\frac{3}{2}$,3].

点评 本题主要考查正切函数的周期性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知平行四边形ABCD中,$|\overrightarrow{AB}|=3$,$|\overrightarrow{AD}|=2$,对角线AC交BD于点O,AB上一点E满足$\overrightarrow{OE}•\overrightarrow{BD}=0$,F为AC上任意一点.
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{BD}$值;
(Ⅱ)若$|\overrightarrow{BD}|=\sqrt{10}$,求$\overrightarrow{AF}•\overrightarrow{EF}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,an+1=$\frac{2(n+1)}{n}$an,设${b_n}=\frac{a_n}{n}$,n∈N*
(Ⅰ)证明{bn}是等比数列;
(Ⅱ)求数列{log2bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P为圆x2+y2=25上一动点,若点P由点(3,4)逆时针旋转45°到达Q点,则点Q的坐标为(-$\frac{\sqrt{2}}{2}$,$\frac{7\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-sin2x+msinx+2,当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时函数有最大值为$\frac{3}{2}$,求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\overrightarrow i=(1,0)、\overrightarrow j=(0,1)$,则与$2\overrightarrow i+3\overrightarrow j$垂直的向量是(  )
A.$3\overrightarrow i+2\overrightarrow j$B.$-2\overrightarrow i+3\overrightarrow j$C.$-3\overrightarrow i+2\overrightarrow j$D.$2\overrightarrow i-3\overrightarrow j$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-x.
(1)求f(x)的单调区间及最大值;
(2)若数列{an}的通项公式为${a_n}=1+\frac{1}{2^n}({n∈{N^*}})$,试结合(1)中有关结论证明:a1•a2•a3…an<e(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x,30≤x≤54.
(1)写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;
(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-2)ex
(1)求f(x)在[t,t+2]上的最小值h(t);
(2)若存在两个不同的实数α,β,使得f(α)=f(β),求证:α+β<2.

查看答案和解析>>

同步练习册答案