精英家教网 > 高中数学 > 题目详情
已知向量
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx)
,其中ω>0,函数f(x)=
m
n
,若f(x)相邻两对称轴间的距离为
π
2

(1)求ω的值;
(2)在△ABC中,a、b、c分别是A、B、C所对的边,f(A)=1,△ABC的面积S=5
3
,b=4,求a.
分析:(1)根据向量数量积的坐标运算公式和三角恒等变换公式,化简得f(x)=2sin(2ωx+
π
6
)
,结合三角函数的周期公式即可算出ω的值;
(2)由(1)的结论得f(A)=2sin(2A+
π
6
)=1
,结合A为三角形的内角算出A=
π
3
,再根据△ABC的面积为5
3
,解出c=5.最后由余弦定理a2=b2+c2-2bccosA的式子,即可算出边a的大小.
解答:解:(1)∵
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx)

f(x)=
m
n
=(cos2ωx-sin2ωx)+2
3
sinωxcosωx

=cos2ωx+
3
sin2ωx=2sin(2ωx+
π
6
)

又∵f(x)相邻两对称轴间的距离为
π
2

∴函数的周期T=
,解之得ω=1;
(2)∵f(x)=2sin(2x+
π
6
)

f(A)=2sin(2A+
π
6
)=1
,得sin(2A+
π
6
)=
1
2

又∵A∈(0,π),得2A+
π
6
∈(
π
6
13π
6
),
2A+
π
6
=
6
,解得A=
π
3

因此,△ABC的面积S=
1
2
bcsinA=
3
c=5
3
,所以c=5.
∴由余弦定理,得a2=b2+c2-2bccosA=16+25-2×4×5×cos
π
3
=21,
解得a=
21
(舍负).
点评:本题以向量的数量积为载体,求函数f(x)的表达式,并依此解△ABC.着重考查了三角恒等变换公式、三角函数的图象与性质、三角形面积公式和余弦定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,若
m
n
,则sin2θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinωx,cosωx),
n
=(cosωx,cosωx)(ω>0)
,设函数f(x)=
m
n
且f(x)的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移
1
2
个单位,得到函数y=g(x)的图象,求函数y=g(x)在区间上[0,
4
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,当θ∈[0,π]时,函数f(θ)=
m
n
的值域是
[-1,2]
[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)已知向量
m
=(sin(2x+
π
6
),sinx)
n
=(1,sinx),f(x)=
m
n

(1)求函数y=f(x)的最小正周期及单调递减区间;
(2)记△ABC的内角A,B,C的对边分别为a,b,c.若f(
B
2
)=
2
+1
2
,b=
5
,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量
m
=(sin 
A
2
,cos 
A
2
)
n
=(cos 
A
2
,-cos 
A
2
)
,且2
m
n
+|
m
|=
2
2
AB
AC
=1

(1)求角A的大小
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案