精英家教网 > 高中数学 > 题目详情
7.如图所示,在三棱柱ABC-A1B1C1中,四边形AA1B1B为边长为2的正方形,四边形BB1C1C为菱形,∠BB1C1=60°,平面AA1B1B⊥平面BB1C1C,点E、F分别是B1C,AA1的中点.
(1)求证:EF∥平面ABC;
(2)求二面角B-AC1-C的余弦值.

分析 (1)取BB1的中点H,连结EH,FH,推导出平面ABC∥平面EHF,由此能证明EF∥平面ABC.
(2)以B为坐标原点,$\overrightarrow{BA},\overrightarrow{B{B_1}}$分别为x轴,y轴正方向,建立空间直角坐标系,利用向量法能求出二面角B-AC1-C的余弦值.

解答 证明:(1)取BB1的中点H,连结EH,FH,
∵点E、F分别是B1C,AA1的中点,
∴EH∥BC,FH∥AB,
∵AB∩BC=B,EH∩FH=H,
AB,BC?平面ABC,EH,FH?平面EHF,
∴平面ABC∥平面EHF,
∵EF?平面EHF,∴EF∥平面ABC.
解:(2)以B为坐标原点,$\overrightarrow{BA},\overrightarrow{B{B_1}}$分别为x轴,y轴正方向,建立空间直角坐标系,
由题意知A(2,0,0),B(0,0,0),C(0,-1,$\sqrt{3}$),C1(0,1,$\sqrt{3}$),
$\overrightarrow{BA}$=(2,0,0),$\overrightarrow{B{C}_{1}}$=(0,1,$\sqrt{3}$),$\overrightarrow{A{C}_{1}}$=(-2,1,$\sqrt{3}$),$\overrightarrow{AC}$=(-2,-1,$\sqrt{3}$),
设平面BAC1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BA}=2x=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=y+\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=$(0,-\sqrt{3},1)$,
设平面AC1C的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AC}=-2x-y+\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{A{C}_{1}}=-2x+y+\sqrt{3}z=0}\end{array}\right.$,取z=2,得$\overrightarrow{m}$=$(\sqrt{3},0,2)$,
设二面角B-AC1-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{7}}{7}$.
∴二面角B-AC1-C的余弦值为$\frac{{\sqrt{7}}}{7}$.

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间想象能力、推理论证能力、数形结合思想、转化思想以及计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-1,2).
(1)求|$\overrightarrow{a}-\overrightarrow{b}$|;
(2)若向量$\overrightarrow{a}-λ\overrightarrow{b}$与2$\overrightarrow{a}+\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛掷一枚均匀的硬币4次,出现正面次数多余反面次数的概率是(  )
A.$\frac{7}{16}$B.$\frac{1}{8}$C.$\frac{1}{2}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(cos(x+$\frac{π}{6}$)+sinx,cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若α∈(0,$\frac{π}{2}$)且cos(α+$\frac{π}{12}$)=$\frac{1}{3}$,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某教育机构随机某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成时,所作的频率分布直方图如图所示,则原始茎叶图可能是(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)求出表中的x,y
(2)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是$\frac{353π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线x2=4y焦点F的直线交抛物线于A,B两点,若|AF|=3,则|BF|的值为(  )
A.2B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案