精英家教网 > 高中数学 > 题目详情
(2010•广州模拟)已知两点M(-1,0)、N(1,0),点P为坐标平面内的动点,满足|
MN
|•|
NP
|=
MN
MP

(1)求动点P的轨迹方程;
(2)若点A(t,4)是动点P的轨迹上的一点,K(m,0)是x轴上的一动点,试讨论直线AK与圆x2+(y-2)2=4的位置关系.
分析:(1)设P(x,y),由 |
MN
|•|
NP
|=
MN
MP
,得 2
(x-1)2+y2
=2(x+1)
,由此化简能求出点P的轨迹C的方程.
(2)由题意得,圆的圆心坐标为(0,2),半径为2.当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离;当m≠4时,写出直线AK的方程,圆心M(0,2)到直线AK的距离,由此可判断直线AK与圆的位置关系.
解答:解:(1)设P(x,y),则
MN
=(2,0)
NP
=(x-1,y)
MP
=(x+1,y)
.(2分)
|
MN
|•|
NP
|=
MN
MP

2
(x-1)2+y2
=2(x+1)
,(4分)
化简得y2=4x.
所以动点P的轨迹方程为y2=4x.(5分)
(2)由点A(t,4)在轨迹y2=4x上,则42=4t,解得t=4,即A(4,4).(6分)
当m=4时,直线AK的方程为x=4,此时直线AK与圆x2+(y-2)2=4相离.(7分)
当m≠4时,直线AK的方程为y=
4
4-m
(x-m)
,即4x+(m-4)y-4m=0,(8分)
圆心(0,2)到直线AK的距离d=
|2m+8|
16+(m-4)2

d=
|2m+8|
16+(m-4)2
<2
,解得m<1;
d=
|2m+8|
16+(m-4)2
=2
,解得m=1;
d=
|2m+8|
16+(m-4)2
>2
,解得m>1.
综上所述,当m<1时,直线AK与圆x2+(y-2)2=4相交;
当m=1时,直线AK与圆x2+(y-2)2=4相切;
当m>1时,直线AK与圆x2+(y-2)2=4相离.(14分)
点评:本题在向量与圆锥曲线交汇处命题,考查了向量的数量积、曲线方程的求法、直线与圆的位置关系以及分类讨论思想和等价转化能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•广州模拟)某校在高二年级开设了A,B,C三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A,B,C三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)
兴趣小组 小组人数 抽取人数
A 24 x
B 36 3
C 48 y
(1)求x,y的值;
(2)若从A,B两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广州模拟)已知某几何体的三视图如右图所示,则该几何体的表面积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广州模拟)命题“?x∈R,ex>x”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广州模拟)在等差数列{an}中,a6+a8=6,则数列{an}的前13项之和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广州模拟)如图所示的程序框图,若输入n=5,则输出的n值为
-1
-1

查看答案和解析>>

同步练习册答案