ÉèP1£¨x1£¬y1£©£¬P1£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¨n¡Ý3£¬n¡ÊN£©ÊǶþ´ÎÇúÏßCÉϵĵ㣬ÇÒa1=|OP1|2£¬a2=|OP2|2£¬¡­£¬an=|OPn|2¹¹³ÉÁËÒ»¸ö¹«²îΪd£¨d¡Ù0£©µÄµÈ²îÊýÁУ¬ÆäÖÐOÊÇ×ø±êÔ­µã£®¼ÇSn=a1+a2+¡­+an£®
£¨1£©ÈôCµÄ·½³ÌΪ=1£¬n=3£®µãP1£¨3£¬0£©¼°S3=255£¬ÇóµãP3µÄ×ø±ê£»£¨Ö»Ðèд³öÒ»¸ö£©
£¨2£©ÈôCµÄ·½³ÌΪ£¨a£¾b£¾0£©£®µãP1£¨a£¬0£©£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬µ±¹«²îd±ä»¯Ê±£¬ÇóSnµÄ×îСֵ£»
£¨3£©ÇëÑ¡¶¨Ò»Ìõ³ýÍÖÔ²ÍâµÄ¶þ´ÎÇúÏßC¼°CÉϵÄÒ»µãP1£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬Ð´³ö·ûºÏÌõ¼þµÄµãP1£¬P2£¬¡­Pn´æÔڵijäÒªÌõ¼þ£¬²¢ËµÃ÷ÀíÓÉ£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÒÀÌâÒâ¿É·Ö±ðÇóµÃa1ºÍa3£¬½ø¶ø°ÑÍÖÔ²·½³ÌºÍÔ²µÄ·½³ÌÁªÁ¢ÇóµÃ½»µã¼´P3µÄ×ø±ê£®
£¨2£©¸ù¾ÝÔ­µãOµ½¶þ´ÎÇúÏßC£º£¨a£¾b£¾0£©Éϸ÷µãµÄ×îС¾àÀëΪb£¬×î´ó¾àÀëΪa£®¸ù¾Ýa1=a2£¬ÅжÏd£¼0£¬½ø¶ø¸ù¾Ýan¡Ýb2£¬ÇóµÃ¡Üd£¬½ø¶øÅжÏSnÔÚ[£¬0£©ÉϵÝÔö£¬½ø¶øÇóµÃSnµÄ×îСֵ£®
£¨3£©µãP1£¨a£¬0£©£¬Ôò¶ÔÓÚ¸ø¶¨µÄn£¬µãP1£¬P2£¬Pn´æÔڵijäÒªÌõ¼þÊÇd£¾0£®¸ù¾ÝË«ÇúÏßµÄÐÔÖÊ¿ÉÖªÔ­µãOµ½Ë«ÇúÏßCÉϸ÷µãµÄ¾àÀëhµÄ·¶Î§£¬½ø¶ø¸ù¾Ý|OP1|=a2ÍƶϵãP1£¬P2£¬Pn´æÔÚµ±ÇÒ½öµ±|OPn|2£¾|OP1|2·ûºÏ£®
½â´ð£º½â£º£¨1£©a1=|OP1|2=100£¬ÓÉS3=£¨a1+a3£©=255£¬µÃa3=|OP3|3=70£®
ÓÉ£¬µÃ£¬
¡àµãP3µÄ×ø±ê¿ÉÒÔΪ£¨2£¬£©£®

£¨2£©Ô­µãOµ½¶þ´ÎÇúÏßC£º£¨a£¾b£¾0£©Éϸ÷µãµÄ×îС¾àÀëΪb£¬×î´ó¾àÀëΪa£®
¡ßa1=|OP1|2=a2£¬
¡àd£¼0£¬ÇÒan=|OPn|2=a2+£¨n-1£©d¡Ýb2£¬
¡à¡Üd£¼0£®¡ßn¡Ý3£¬£¾0
¡àSn=na2+dÔÚ[£¬0£©ÉϵÝÔö£¬
¹ÊSnµÄ×îСֵΪna2+=£®

£¨3£©ÈôË«ÇúÏßC£º-=1£¬µãP1£¨a£¬0£©£¬
Ôò¶ÔÓÚ¸ø¶¨µÄn£¬µãP1£¬P2£¬Pn´æÔڵijäÒªÌõ¼þÊÇd£¾0£®
¡ßÔ­µãOµ½Ë«ÇúÏßCÉϸ÷µãµÄ¾àÀëh¡Ê[|a|£¬+¡Þ£©£¬ÇÒ|OP1|=a2£¬
¡àµãP1£¬P2£¬Pn´æÔÚµ±ÇÒ½öµ±|OPn|2£¾|OP1|2£¬¼´d£¾0£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȲîÊýÁеÄÐÔÖÊ£®Éæ¼°ÁËԲ׶ÇúÏߺͺ¯ÊýµÄ֪ʶ£¬¿¼²éÁËѧÉú×ۺϷÖÎöÎÊÌâºÍ»ù±¾µÄÔËËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªfÊÇÖ±½Ç×ø±êƽÃæxOyµ½×ÔÉíµÄÒ»¸öÓ³É䣬µãPÔÚÓ³ÉäfϵÄÏóΪµãQ£¬¼Ç×÷Q=f£¨P£©£®ÉèP1£¨x1£¬y1£©£¬P2=f£¨P1£©£¬P3=f£¨P2£©£¬¡­£¬Pn=f£¨Pn-1£©£¬¡­£®Èç¹û´æÔÚÒ»¸öÔ²£¬Ê¹ËùÓеĵãPn£¨xn£¬yn£©£¨n¡ÊN*£©¶¼ÔÚÕâ¸öÔ²ÄÚ»òÔ²ÉÏ£¬ÄÇô³ÆÕâ¸öԲΪµãPn£¨xn£¬yn£©µÄÒ»¸öÊÕÁ²Ô²£®ÌرðµØ£¬µ±P1=f£¨P1£©Ê±£¬Ôò³ÆµãP1ΪӳÉäfϵIJ»¶¯µã£®ÈôµãP£¨x£¬y£©ÔÚÓ³ÉäfϵÄÏóΪµãQ(-x+1£¬
12
y)
£®
£¨¢ñ£©ÇóÓ³Éäfϲ»¶¯µãµÄ×ø±ê£»
£¨¢ò£©ÈôP1µÄ×ø±êΪ£¨2£¬2£©£¬ÇóÖ¤£ºµãPn£¨xn£¬yn£©£¨n¡ÊN*£©´æÔÚÒ»¸ö°ë¾¶Îª2µÄÊÕÁ²Ô²£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèP1£¨x1£¬y1£©£¬P1£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¨n¡Ý3£¬n¡ÊN£©ÊǶþ´ÎÇúÏßCÉϵĵ㣬ÇÒa1=|OP1|2£¬a2=|OP2|2£¬¡­£¬an=|OPn|2¹¹³ÉÁËÒ»¸ö¹«²îΪd£¨d¡Ù0£©µÄµÈ²îÊýÁУ¬ÆäÖÐOÊÇ×ø±êÔ­µã£®¼ÇSn=a1+a2+¡­+an£®
£¨1£©ÈôCµÄ·½³ÌΪ
x2
100
+
y2
25
=1£¬n=3£®µãP1£¨10£¬0£©¼°S3=255£¬ÇóµãP3µÄ×ø±ê£»£¨Ö»Ðèд³öÒ»¸ö£©
£¨2£©ÈôCµÄ·½³ÌΪ
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£®µãP1£¨a£¬0£©£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬µ±¹«²îd±ä»¯Ê±£¬ÇóSnµÄ×îСֵ£»
£¨3£©ÇëÑ¡¶¨Ò»Ìõ³ýÍÖÔ²ÍâµÄ¶þ´ÎÇúÏßC¼°CÉϵÄÒ»µãP1£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬Ð´³ö·ûºÏÌõ¼þµÄµãP1£¬P2£¬¡­Pn´æÔڵijäÒªÌõ¼þ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèP1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©ÊǺ¯Êýf(x)=
2x
2x+
2
ͼÏóÉϵÄÁ½µã£¬ÇÒ
OP
=
1
2
(
OP1
+
OP2
)
£¬µãPµÄºá×ø±êΪ
1
2
£®
£¨1£©ÇóÖ¤£ºPµãµÄ×Ý×ø±êΪ¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£»
£¨2£©ÈôSn=
n
i=1
f(
i
n
)£¬n¡ÊN*
£¬ÇóSn£»
£¨3£©¼ÇTnΪÊýÁÐ{
1
(Sn+
2
)(Sn+1+
2
)
}
µÄÇ°nÏîºÍ£¬ÈôTn£¼a(Sn+1+
2
)
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£®
¢Ùan-1+1=
an
n
£»
¢Ú(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)¡­(1+
1
an
)¡Ü3-
1
n

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèP1£¨x1£¬y1£©£¬P1£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¨n¡Ý3£¬n¡ÊN£© ÊǶþ´ÎÇúÏßCÉϵĵ㣬ÇÒa1=|OP1|2£¬a2=|OP2|2£¬¡­£¬an=|OPn|2¹¹³ÉÁËÒ»¸ö¹«²îΪd£¨d¡Ù0£© µÄµÈ²îÊýÁУ¬ÆäÖÐOÊÇ×ø±êÔ­µã£®¼ÇSn=a1+a2+¡­+an£®
£¨1£©ÈôCµÄ·½³ÌΪ
x2
9
-y2=1£¬n=3£®µãP1£¨3£¬0£© ¼°S3=162£¬ÇóµãP3µÄ×ø±ê£»£¨Ö»Ðèд³öÒ»¸ö£©
£¨2£©ÈôCµÄ·½³ÌΪy2=2px£¨p¡Ù0£©£®µãP1£¨0£¬0£©£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬Ö¤Ã÷£º£¨x1+p£©2£¬£¨x2+p£©2£¬¡­£¬£¨xn+p£©2³ÉµÈ²îÊýÁУ»
£¨3£©ÈôCµÄ·½³ÌΪ
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£®µãP1£¨a£¬0£©£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬µ±¹«²îd±ä»¯Ê±£¬ÇóSnµÄ×îСֵ£®
·ûºÅÒâÒå ±¾ÊÔ¾íËùÓ÷ûºÅ µÈͬÓÚ¡¶ÊµÑé½Ì²Ä¡··ûºÅ
ÏòÁ¿×ø±ê
a
={x£¬y}
a
=£¨x£¬y£©
ÕýÇÐ tg tan

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
a•2x
2x+
2
µÄͼÏó¹ýµã(0£¬
2
-1)
£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©Îªy=f£¨x£©µÄͼÏóÉÏÁ½¸ö²»Í¬µã£¬ÓÖµãP£¨xP£¬yP£©Âú×㣺
OP
=
1
2
(
OP1
+
OP2
)
£¬ÆäÖÐOΪ×ø±êÔ­µã£®ÊÔÎÊ£ºµ±xP=
1
2
ʱ£¬yPÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öyPµÄÖµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸