精英家教网 > 高中数学 > 题目详情
(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F1(-
3
,0),而且过点H(
3
1
2
).
(1)求椭圆E的方程;
(2)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线OT与过点M,N的圆G相切,切点为G.证明:线段OT的长为定值.
分析:(1)利用椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F1(-
3
,0),而且过点H(
3
1
2
),建立方程,即可求得椭圆E的方程;
(2)先计算|OM|•|ON|,再利用切割线定理可得线段OT的长度.
解答:(1)解:由题意,得:
a2-b2=3
3
a2
+
1
4
b2
=1
,∴
a2=4
b2=1

∴椭圆E的方程为
x2
4
+y2=1

(2)证明:由(1)可知A1(0,1),A2(0,-1),设P(x0,y0),
直线PA1:y-1=
y0-1
x0
x,令y=0,得xN=
-x0
y0-1

直线PA2:y+1=
y0+1
x0
x,令y=0,得xM=
-x0
y0+1

则|OM|•|ON|=|
-x0
y0-1
|×|
-x0
y0+1
|=
x02
y02-1

x02
4
+y02=1

∴|OM|•|ON|=4,由切割线定理得|OT|2=|OM|•|ON|=4
所以|OT|=2,即线段OT的长度为定值2.
点评:本题考查椭圆的标准方程,考查圆与椭圆为综合,考查线段长的求解,认真审题,挖掘隐含是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山二模)已知函数fM(x)的定义域为实数集R,满足fM(x)=
1,x∈M
0,x∉M
(M是R的非空真子集),在R上有两个非空真子集A,B,且A∩B=∅,则F(x)=
fA∪B(x)+1
fA(x)+fB(x)+1
的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类别 轻度污染 中度污染 重度污染 严重污染
某市2012年3月8日-4月7日(30天)对空气质量指数PM2.5进行监测,获得数据后得到如条形图:
(Ⅰ)估计该城市一个月内空气质量类别为良的概率;
(Ⅱ)在上述30个监测数据中任取2个,设X为空气质量类别为优的天数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)若logmn=-1,则m+3n的最小值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)函数y=f(x)的图象在点M(1,f(1))处的切线方程为y=ex-e,则f′(1)=
e
e

查看答案和解析>>

同步练习册答案