精英家教网 > 高中数学 > 题目详情
6.已知正数a、b满足2a2+b2=5,则a$\sqrt{{b}^{2}+3}$的最大值为2$\sqrt{2}$.

分析 变形利用基本不等式的性质即可得出.

解答 解:∵正数a、b满足2a2+b2=5,即2a2+b2+3=8,
则a$\sqrt{{b}^{2}+3}$≤$\frac{1}{\sqrt{2}}×\frac{(\sqrt{2}a)^{2}+(\sqrt{{b}^{2}+3})^{2}}{2}$=2$\sqrt{2}$,当且仅当$\sqrt{2}a$=$\sqrt{{b}^{2}+3}$,2a2+b2=5,a,b>0,即b=1,a=$\sqrt{2}$时取等号.
故答案为:2$\sqrt{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,则实数a的值为(  )
A.-1B.0C.-1或0D.1或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设三个数$\sqrt{{{({x-1})}^2}+{y^2}}$,2,$\sqrt{{{({x+1})}^2}+{y^2}}$成等差数列,其中(x,y)对应点的曲线方程是C.
(1)求C的标准方程;
(2)直线l1:x-y+m=0与曲线C相交于不同两点M,N,且满足∠MON为钝角,其中O为直角坐标原点,求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P是椭圆$\frac{{x}^{2}}{4}$+y2=1上的任意一点,A(4,0),若M为线段PA中点,则点M的轨迹方程是(  )
A.(x-2)2+4y2=1B.(x-4)2+4y2=1C.(x+2)2+4y2=1D.(x+4)2+4y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={m,5},B={m2+1,m,2},若x∈A是x∈B的充分条件,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面四组函数中,函数f(x)和g(x)表示同一函数的是(  )
A.f(x)=$\sqrt{x-1}$•$\sqrt{x+3}$,g(x)=$\sqrt{{x}^{2}+2x-3}$B.f(x)=$\frac{{x}^{2}-2x+1}{x-1}$,g(x)=x-1
C.f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|}$,g(x)=$\frac{\sqrt{1-{x}^{2}}}{x+2}$D.以上三组都不是同一函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的通项公式为an=log3$\frac{n}{n+1}$(n∈N*),设其前n项和为Sn,则使Sn<-4成立的最小自然数n等于81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,∠C=90°,BC=8,AB=10,O为BC上一点,以O为圆心,OB为半径作半圆与BC边、AB边分别交于点D、E,连结DE.
(Ⅰ)若BD=6,求线段DE的长;
(Ⅱ)过点E作半圆O的切线,切线与AC相交于点F,证明:AF=EF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的个数是2.

查看答案和解析>>

同步练习册答案