精英家教网 > 高中数学 > 题目详情
6.函数$f(x)=\frac{{2\sqrt{x}}}{x+1}$的最大值为(  )
A.2B.1C.$\sqrt{2}$D.4

分析 将f(x)进行化简变形,利用基本不等式求出最值,注意等号成立的条件.

解答 解:根据题意,有x≥0,当x>0时
则f(x)=$\frac{2}{\sqrt{x}+\frac{1}{\sqrt{x}}}$,而$\sqrt{x}+\frac{1}{\sqrt{x}}$≥2则f(x)≤1,
故选:B.

点评 本题考查了利用不等式求函数的最值问题,属于基础题,也是高考中常见的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|2x-4|+1.
(Ⅰ)解不等式f(x)>|x+1|;
(Ⅱ)设正数a,b满足ab=a+b,若不等式f(m+1)≤a+4b对任意a,b∈(0,+∞)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$y=\frac{1}{{a{x^2}-ax+1}}$的定义域R,则实数a的取值范围为(  )
A.a≤0或a>4B.0≤a<4C.0<a<4D.0≤a≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\sqrt{2x+1}$+lg(3-4x)的定义域为(  )
A.(-$\frac{1}{2}$,$\frac{3}{4}$)B.[-$\frac{1}{2}$,$\frac{3}{4}$)C.(-$\frac{1}{2}$,0)∪(0,+∞)D.(-∞,$\frac{1}{2}$]∪[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若抛物线y2=8x上一点P到其焦点的距离为9,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=aln(x+$\sqrt{{x^2}+1}$)+$\frac{b}{{{2^x}-1}}$+$\frac{b+6}{2}$(a,b为常数),在(0,+∞)上有最小值4,则函数f(x)在(-∞,0)上有(  )
A.最大值4B.最小值-4C.最大值2D.最小值-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)△ABC中,a=3$\sqrt{3}$,c=2,B=150°,求b.
(2)△ABC中,a=2,b=$\sqrt{2}$,c=$\sqrt{3}$+1,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+ax2+bx+c (a,b,c∈R)在x=-1处有极值,在x=3处的切线方程为y=-16.
(1)求a,b,c的值;
(2)求函数f(x)在[-3,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{x+b}{1+{x}^{2}}$是定义在(-1,1)上的奇函数.
(1)求函数f(x)的解析式;
(2)用单调性的定义证明函数f(x)在(-1,1)上是增函数;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

同步练习册答案