【题目】2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?
图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.
若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.
35 | 38 | 27 | 16 | 29 | 42 | 55 | 18 |
26 | 15 | 36 | 39 | 54 | 17 | 30 | 43 |
37 | 34 | 13 | 28 | 41 | 32 | 19 | 56 |
14 | 25 | 40 | 33 | 20 | 53 | 44 | 31 |
63 | 12 | 21 | 52 | 1 | 8 | 57 | 46 |
24 | 51 | 64 | 9 | 60 | 45 | 2 | 5 |
11 | 62 | 49 | 22 | 7 | 4 | 47 | 58 |
50 | 23 | 10 | 61 | 48 | 59 | 6 | 3 |
图(一)
1 | |||
A | |||
3 | 12 |
图(二)
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.
(1)若直线与椭圆交于两点,求的值;
(2)求椭圆的内接矩形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,平面 平面,底面为梯形,,且
(Ⅰ)求证:;
(Ⅱ)求二面角B-PD-C的余弦值;
(Ⅲ)若M是棱PA的中点,求证:对于棱BC上任意一点F,MF与PC都不平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( )
(1)若函数的定义域关于原点对称,则为偶函数的充要条件为对任意的,都成立;
(2)若函数的定义域关于原点对称,则“”是“为奇函数”的必要条件;
(3)函数对任意的实数都有,则在实数集上是增函数;
(4)已知函数在其定义域内有两个不同的极值点,则实数的取值范围是.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若α是第一象限角,则sinα+cosα的值与1的大小关系是( )
A. sinα+cosα>1B. sinα+cosα=1C. sinα+cosα<1D. 不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com