精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.数列{bn}是等比数列,b3=a2+a3,b2b5=128(其中n=1,2,3,…).
(I)求数列{an}和{bn}的通项公式;(II)记cn=anbn,求数列cn前n项和Tn
分析:(I)在数列{an}中,把已知条件用首项a1,公差d表示,联立方程可求a1和d;在数列{bn}中,用b1和公比q把已知表示,求出b1和公比q
(II)由(I)可知cn=(2n-1)•2n,利用错位相减求出数列的和
解答:解:(I)公差为d,
a1+2d=5
15a1+15×7d=225

a1=1
d=2
故an=2n-1(n=1,2,3,…).
设等比数列bn的公比为q,则
b3=8
b3
q
b3q2=128
,∴b3=8,q=2
∴bn=b3•qn-3=2n(n=1,2,3,…).
(II)∵cn=(2n-1)•2n∵Tn=2+3•22+5•23+…+(2n-1)•2n
2Tn=22+3•23+5•24+…+(2n-3)•2n+(2n-1)•2n+1
作差:-Tn=2+23+24+25+…+2n+1-(2n-1)•2n+1
=2+
23(1-2n-1)
1-2
-(2n-1)•2n+1

=2+23(2n-1-1)-(2n-1)•2n+1=2+2n+2-8-2n+2n+2n+1=-6-2n+1(2n-3)
∴TN=(2n-3)•2n+1+6(n=1,2,3,…).
点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案