精英家教网 > 高中数学 > 题目详情
若不等式|a-1|≥
3x+1
+
3y+1
+
3z+1
对满足x+y+z=1的一切正实数x,y,z恒成立,求实数a的取值范围.
分析:根据柯西不等式进行配凑,可得不等式的右边小于或等于3
2
,从而得到|a-1|≥3
2
,再解关于a的不等式,即可得到实数a的取值范围.
解答:解:根据柯西不等式,有
(
3x+1
+
3y+1
+
3z+1
)2=(1•
3x+1
+1•
3y+1
+1•
3z+1
)2
≤(12+12+12)[(
3x+1
)
2
+(
3y+1
)
2
+(
3z+1
)
2
]=3•[3(x+y+z)+3]=3×6=18

3x+1
+
3y+1
+
3z+1
≤3
2

又∵|a-1|≥
3x+1
+
3y+1
+
3z+1
恒成立,
|a-1|≥3
2
,得a-1≥3
2
a-1≤-3
2

a≥3
2
+1
a≤1-3
2

所以a的取值范围是(-∞,1-3
2
]∪[1+3
2
,+∞)
点评:本题给出关于x的不等式恒成立,求参数a的取值范围,着重考查了不等式恒成立问题的理解和运用柯西不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
x=s+
1
s
y=s-
1
s
(s为参数)相交于A,B两点,求线段AB的长.
(2)若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x、y、z恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分
(1)二阶矩阵M对应的变换将向量
1
-1
-2
1
分别变换成向量
3
-2
-2
1
,直线l在M的变换下所得到的直线l′的方程是2x-y-1=0,求直线l的方程.
(2)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
x=s+
1
s
y=s-
1
s
(s为参数)相交于A,B两点,求线段AB的长.
(3)若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|a-1|≥x+y+z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,则实数a的取值范围是
a
3
+1
或a≤-
3
+1
a
3
+1
或a≤-
3
+1

查看答案和解析>>

同步练习册答案