精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,满足(1-q)Sn+qan=1,且q(q-1)≠0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(Ⅰ)求出a1=1.利用当n≥2时,由Sn-Sn-1=an,利用q(q-1)≠0,说明{an}是以1为首项,q为公比的等比数列,求出通项公式.
(Ⅱ)求出Sn=
1-anq
1-q
,灵活S3+S6=2S9,得到a2+a5=2a8.说明a2,a8,a5成等差数列.
解答: 解:(Ⅰ)当n=1时,由(1-q)S1+qa1=1,a1=1.
当n≥2时,由(1-q)Sn+qan=1,得(1-q)Sn-1+qan-1=1,两式相减得an=qan-1
又q(q-1)≠0,所以{an}是以1为首项,q为公比的等比数列,
故an=qn-1

(Ⅱ)由(Ⅰ)可知Sn=
1-anq
1-q
,又S3+S6=2S9,得
1-a3q
1-q
+
1-a6q
1-q
=
2(1-a9q)
1-q

化简得a3+a6=2a9,两边同除以q得a2+a5=2a8
故a2,a8,a5成等差数列.
点评:本题考查等差数列以及等比数列的综合应用,数列求和以及通项公式的求法,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的
2
倍,P为侧棱SD上的点.
(Ⅰ)当SP:PD为何值时,直线SD⊥平面PAC,
(Ⅱ)在(1)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC,若存在,求SE:EC的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非负实数x,y满足
x+y≤4
x-y≤1
,若实数k满足y+1=k(x+1),则(  )
A、k的最小值为1,k的最大值为
5
7
B、k的最小值为
1
2
,k的最大值为
5
7
C、k的最小值为
1
2
,k的最大值为5
D、k的最小值为
5
7
,k的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为棱形,PA⊥底面ABCD,∠ABC=60°.E,F,M分别是BC,CD,PB的中点.
(1)证明:AB⊥MF;
(2)若PA=BA,求二面角E-MF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.
(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;
(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x+1|-b|2x-4|(a,b∈R)
(Ⅰ)当a=1,b=
1
2
时,解不等式f(x)≤0
(Ⅱ)当b=1时,若函数f(x)既存在最小值,也存在最大值.求所有满足条件的实数a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为
1
9
的等差数列,他第一次测试合格的概率不超过
4
9
,且他直到第二次测试才合格的概率为
8
27

(Ⅰ)求小刘第一次参加测试就合格的概率;
(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行右边的程序框图,则输出的A是(  )
A、
29
12
B、
70
29
C、
29
70
D、
169
70

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
lg(1-2x)
的定义域为(  )
A、(-∞,0]
B、(-∞,0)
C、(0,
1
2
D、(-∞,
1
2

查看答案和解析>>

同步练习册答案