精英家教网 > 高中数学 > 题目详情

【题目】某商店每天(开始营业时)以每件15元的价格购入商品若干(商品在商店的保鲜时间为8小时,该商店的营业时间也恰好为8小时),并开始以每件30元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的商品将以每件10元的价格低价处理完毕(根据经验,2小时内完全能够把商品低价处理完毕,且处理完毕后,当天不再购进商品).该商店统计了100商品在每天的前6小时内的销售量,由于某种原因销售量频数表中的部分数据被污损而不能看清,制成如下表格(注:视频率为概率).

6小时内的销售量

(单位:件)

3

4

5

频数

30

1)若某天商店购进商品4件,试求商店该天销售商品获取利润的分布列和期望;

2)若商店每天在购进4商品时所获得的平均利润最大,求的取值集合.

【答案】1)见解析(2.

【解析】

1)设商店某天销售商品获得的利润为,分别可求得当需求量为345时的利润的值,进而可得分布列和期望;

2)可得商店每天购进的商品的件数取值可能为3件,4件,5件.当购进商品3件时,,同理可得当购进商品4件时,,当购进商品5件时,,结合条件可得出的取值范围.

解:(1)设商店某天销售商品获得的利润为(单位:元)

当需求量为3时,

当需求量为4时,

当需求量为5时,

的分布列为

40

60

0.3

0.7

(元),

所以商店该天销售A商品获得的利润均值为54.

(2)设销售商品获得的利润为

依题意,视频率为概率,为追求更多的利润,

则商店每天购进的商品的件数取值可能为3件,4件,5,

当购进商品3件时,

当购进商品4件时,

当购进商品5件时,

由题意,解得,又知

所以的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数上是增函数,求正数的取值范围;

(2)当时,设函数的图象与x轴的交点为,曲线两点处的切线斜率分别为,求证:+ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )

A. 关于直线对称 B. 关于直线对称

C. 关于点对称 D. 关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,


初等代数

初等几何

初等数论

微积分初步

合格的概率





1)求甲同学取得参加数学竞赛复赛的资格的概率;

2)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.

1)求圆的极坐标方程;

2)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】安排6名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则不同的安排方式共有( ).

A.360B.300C.540D.180

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)若,求曲线在点处的切线方程;

2)求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A10海里的C处,并测得渔船正沿方位角105°的方向,以9海里/时的速度向某小岛B靠拢,我海军舰艇立即以21海里/时的速度前去营救,恰在小岛B处追上渔船.

1)试问舰艇应按照怎样的航向前进?

2)求出舰艇靠近渔船所用的时间?

(参考数据:)

查看答案和解析>>

同步练习册答案