精英家教网 > 高中数学 > 题目详情
若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(  )
A、点在圆上B、点在圆内C、点在圆外D、不能确定
分析:ax+by=1与圆C:x2+y2=1有两个不同交点说明圆心到直线的距离小于圆的半径,得到关于a,b的不等式,判断结论是否成立.
解答:解:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,
1
a2+b2
<1,∴a2+b2>1,
点P(a,b)在圆C外部,
故选C.
点评:本题考查直线与圆的位置关系、点与圆的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线l:ax+by+1=0(a>0,b>0)始终平分圆M:x2+y2+8x+2y+1=0的周长,则
1
a
+
4
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)若直线l:ax+by=1与圆C:x2+y2=1有两个不同的交点,则点P(a,b)与圆C的位置关系是
P在圆外
P在圆外

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)若直线l:ax+by=1与圆C:x2+y2=1相切,则a2+b2=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l:ax+by+4=0(a>0,b>0)始终平分圆x2+y2+8x+2y+1=0,则ab的最大值为(  )

查看答案和解析>>

同步练习册答案