精英家教网 > 高中数学 > 题目详情
若椭圆
x2
m
+
y 2
n
=1(m>n>0)
和双曲线
x2
a
-
y 2
b
=1(a>0,b>0)
有相同的焦点F1,F2,P是两曲线的一个交点,则|PF1|•|PF2|等于(  )
A、m-a
B、
1
2
(m-a)
C、m2-a2
D、
m
-
a
分析:由题意知|PF1|+|PF2|=2m,|PF1|-|PF2|=2a,由此可知|PF1|•|PF2|=
(|PF1|+|PF2|) 2-(|PF1|-|PF2|) 2 
4
=m-a.
解答:解:∵椭圆
x2
m
+
y 2
n
=1(m>n>0)
和双曲线
x2
a
-
y 2
b
=1(a>0,b>0)
有相同的焦点F1,F2
P是两曲线的一个交点,
∴|PF1|+|PF2|=2
m
,|PF1|-|PF2|=2
a

|PF1|•|PF2|=
(|PF1|+|PF2|) 2-(|PF1|-|PF2|) 2 
4
=m-a.
故选A.
点评:本题考查双曲线和椭圆的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
m
+
y2
n
=1
,常数m、n∈R+,且m>n.
(1)当m=25,n=21时,过椭圆左焦点F的直线交椭圆于点P,与y轴交于点Q,若
QF
=2
FP
,求直线PQ的斜率;
(2)过原点且斜率分别为k和-k(k≥1)的两条直线与椭圆
x2
m
+
y2
n
=1
的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),试用k表示四边形ABCD的面积S;
(3)求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=x-1和椭圆
x2
m
+
y2
m-1
=1
(m>1)交于A、B两点,若以AB为直径的圆过椭圆的左焦点F,则实数m的值为
2+
3
2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程
x2
m
-
y2
m2-2
=1
表示焦点在y轴上的椭圆,那么实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设椭圆
x2
m+1
+y2=1
的两个焦点是F1(-c,0)、F2(c,0)(c>0),且椭圆上存在点M,使
MF1
MF2
=0

(1)求实数m的取值范围;
(2)若直线l:y=x+2与椭圆存在一个公共点E,使得|EF1|+|EF2|取得最小值,求此最小值及此时椭圆的方程;
(3)是否存在斜率为k(k≠0)的直线l,与条件(Ⅱ)下的椭圆交于A、B两点,使得经过AB的中点Q及N(0,-1)的直线NQ满足
NQ
AB
=0
?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程
x2
m
-
y2
m2-2
=1
表示焦点在y轴上的椭圆,那么实数m的取值范围是(  )
A.m>0B.0<m<1C.-2<m<1D.m>1且m≠
2

查看答案和解析>>

同步练习册答案