【题目】已知函数图像上一点处的切线方程为
(1)求的值;
(2)若方程在区间内有两个不等实根,求的取值范围;
(3)令如果的图像与轴交于两点,的中点为,求证:
【答案】(1);(2);(3)证明见解析
【解析】
(1)根据导数的几何意义可知,利用切线方程求得,代入曲线可得关于的方程,与联立可构造方程组求得结果;(2)将问题转化为与的图象在上有两个交点;利用导数得到在上的单调性和最值,从而确定有两个交点时的取值范围,进而得到结果;(3)采用反证法,假设,利用在上,中点坐标公式和可化简整理得到,令,构造函数,利用导数可知在上单调递增,从而得到,与等式矛盾,可知假设不成立,从而证得结论.
由题意得:定义域为;
(1)在处的切线方程为:
,解得:
(2)方程在区间内有两个不等实根等价于与的图象在上有两个交点
由(1)知:,
当时,;当时,
在上单调递增,在上单调递减
又,
,解得:
(3),则
假设,则有:
…①;…②;
…③;…④
①②得:
由④得: ,即:
,即
令,由得:
设,
在上单调递增
不成立,即假设不成立
科目:高中数学 来源: 题型:
【题目】如图所示,合肥一中积极开展美丽校园建设,现拟在边长为0.6千米的正方形地块上划出一片三角形地块建设小型生态园,点分别在边上.
(1)当点分别时边中点和靠近的三等分点时,求的余弦值;
(2)实地勘察后发现,由于地形等原因,的周长必须为1.2千米,请研究是否为定值,若是,求此定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形ABCD中,E、F是AD、BD中点,AB=AD=CD=2, BD=2 ,∠BDC=90°,将△ABD沿对角线BD折起至△,使平面⊥平面BCD,则四面体中,下列结论不正确是 ( )
A. EF∥平面
B. 异面直线CD与所成的角为90°
C. 异面直线EF与所成的角为60°
D. 直线与平面BCD所成的角为30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图像上一点处的切线方程为
(1)求的值;
(2)若方程在区间内有两个不等实根,求的取值范围;
(3)令如果的图像与轴交于两点,的中点为,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,平面ABCD,四边形ABCD是矩形,且,,E是棱BC上的动点,F是线段PE的中点.
(Ⅰ)求证:平面ADF;
(Ⅱ)若直线DE与平面ADF所成角为30°,求EC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com