精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E)的焦距为,直线x轴的交点为G,过点且不与x轴重合的直线E于点AB.垂直x轴时,的面积为.

1)求E的方程;

2)若,垂足为C,直线x轴于点D,证明:.

【答案】1;(2)证明见解析;

【解析】

1)由题意可得,即,由三角形的面积公式可得,由在椭圆上,代入椭圆方程,解方程可得,进而得到椭圆方程;

2)设直线的方程为,联立椭圆方程,设,运用韦达定理,求得直线的方程,可令,求得,再与作差,计算可得证明.

解:(1)由焦距为,可得,即,即,①

由题意可得

可得,由在椭圆上,可得,②

由①②解得

则椭圆的方程为

2)证明:过点且不与轴重合的直线的方程为

联立椭圆方程,可得

可得直线的方程为

,可得

,可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019831日至915日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是(

A.第一场得分的中位数为B.第二场得分的平均数为

C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2x1aR),若对任意x1[1,+),总存在x2R,使fx1)=gx2),则实数a的取值范围是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程(为参数),直线的参数方程(为参数).

1)求曲线在直角坐标系中的普通方程;

2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程(为参数),直线的参数方程(为参数).

1)求曲线在直角坐标系中的普通方程;

2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数在区间上的值域为,则称区间是函数完美区间,另外,定义区间复区间长度,已知函数,则(

A.的一个完美区间

B.的一个完美区间

C.的所有完美区间复区间长度的和为

D.的所有完美区间复区间长度的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数在区间上的值域为,则称区间是函数完美区间,另外,定义区间复区间长度,已知函数,则(

A.的一个完美区间

B.的一个完美区间

C.的所有完美区间复区间长度的和为

D.的所有完美区间复区间长度的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)假设甲、乙、丙三名学生均获奖,且各自获一等奖和二等奖的可能性相同,求三人获得奖学金之和不超过1000元的概率.

附:回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).

表1:

编号\测试项目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

规定:每项测试合格得5分,不合格得0分.

(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.

①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;

②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;

(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):

表2:

测试项目

1

2

3

4

5

实测合格人数

8

8

7

7

2

定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:

表3:

测试项目

1

2

3

4

5

预测前预估难度

0.9

0.8

0.7

0.6

0.4

判断本次测试的难度预估是否合理.

查看答案和解析>>

同步练习册答案