精英家教网 > 高中数学 > 题目详情

【题目】某地拟建造一座大型体育馆,其设计方案侧面的外轮廓如图所示,曲线是以点为圆心的圆的一部分,其中;曲线是抛物线的一部分;,且恰好等于圆的半径.假定拟建体育馆的高(单位:米,下同).

1)若,求的长度;

2)若要求体育馆侧面的最大宽度不超过米,求的取值范围;

3)若,求的最大值.

【答案】1;(2;(3.

【解析】

1)由可求出的长,在抛物线方程中,令,可求出的长,在圆的方程中,令,可求出的长,相加即可得出的长;

2)问题转化为恒成立,根据基本不等式解出即可;

3)先求得,在圆的方程中,令,可得出,从而得出,令,将问题转化为求函数上的最大值.

法一:令,利用三角函数知识可求出的最大值;

法二:令,将问题转化为已知,求的最大值,利用数形结合思想可求出的最大值.

1)因为圆的半径为,所以米,

中令,得

在圆中,令

所以米;

2)由圆的半径为,得

中,令,得

由题意知恒成立,所以恒成立.

时,即当时,取得最小值,故,解得.

因此,实数的取值范围是

3)当时,

又圆的方程为,令,得

所以,从而

下求的最大值.

方法一:令

其中是锐角,且,从而当时,取得最大值

方法二:令,则题意相当于:已知,求的最大值.

当直线与圆弧相切时,直线轴上的截距最大,此时取最大值,且有,解得

因此,的最大值为

答:当米时,的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于,且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.

1)求椭圆C的方程;

2)若直线l垂直于x轴,且具有性质H,求直线l的方程;

3)求证:在椭圆C上不存在三个不同的点PQR,使得直线都具有性质H.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)若,证明:函数在区间上是单调增函数;

2)求函数在区间上的最大值;

3)若函数的图像过原点,且的导数,当时,函数过点的切线至少有2条,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李克强总理在很多重大场合都提出大众创业,万众创新.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.

1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)

2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题是(  )

A.和两条异面直线都相交的两条直线是异面直线

B.和两条异面直线都相交于不同点的两条直线是异面直线

C.和两条异面直线都垂直的直线是异面直线的公垂线

D.是异面直线,是异面直线,则是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某商场2018年洗衣机、电视机和电冰箱三种电器各季度销量的百分比堆积图(例如:第3季度内,洗衣机销量约占,电视机销量约占,电冰箱销量约占).根据该图,以下结论中一定正确的是( )

A. 电视机销量最大的是第4季度

B. 电冰箱销量最小的是第4季度

C. 电视机的全年销量最大

D. 电冰箱的全年销量最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线与抛物线)交于两点,为坐标原点,.

1)求直线的方程和抛物线的方程;

2)若抛物线上一动点运动时(不与重合),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照如下规则构造数表:第一行是:2;第二行是:;即35,第三行是:4668(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)

2

3,5

4,6,6,8

5,7,7,9,7,9,9,11

……………………………………

若第行所有的项的和为

1)求

2)试求的递推关系,并据此求出数列的通项公式;

3)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.如果数列满足 ,其中,则称的“衍生数列”.

(Ⅰ)若数列的“衍生数列”是,求

(Ⅱ)若为偶数,且的“衍生数列”是,证明:的“衍生数列”是

(Ⅲ)若为奇数,且的“衍生数列”是的“衍生数列”是,….依次将数列,…的第项取出,构成数列 .证明:是等差数列.

查看答案和解析>>

同步练习册答案