精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在平面直角坐标系xOy中,已知椭圆C1,椭圆C2,C2与C1的长轴长之比为∶1,离心率相同.

(1)求椭圆C2的标准方程;

(2)设点为椭圆C2上一点.

① 射线与椭圆C1依次交于点,求证:为定值;

② 过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.

【答案】(1);(2)①见解析,②见解析.

【解析】

(1)由题所求椭圆 a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值

1)设椭圆C2的焦距为2c,由题意,

解得,因此椭圆C2的标准方程为

2)①1°当直线OP斜率不存在时,

,则

2°当直线OP斜率存在时,设直线OP的方程为

代入椭圆C1的方程,消去y,得

所以,同理

所以,由题意,同号,所以

从而

所以为定值.

②设,所以直线的方程为,即,记,则的方程为

代入椭圆C1的方程,消去y,得

因为直线与椭圆C1有且只有一个公共点,

所以,即

代入上式,整理得,

同理可得,

所以为关于k的方程的两根,

从而.又点在椭圆C2上,所以

所以为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为预防病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%,则认为测试没有通过),公司选定个流感样本分成三组,测试结果如下表:

疫苗有效

疫苗无效

已知在全体样本中随机抽取个,抽到组疫苗有效的概率是

(Ⅰ)求的值;

(Ⅱ)现用分层抽样的方法在全体样本中抽取个测试结果,问应在组抽取多少个?

(Ⅲ)已知,求不能通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Ptt1),tR,点E是圆上的动点,点F是圆上的动点,则|PF||PE|的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年年月某市邮政快递业务量完成件数较2017年月月同比增长,如图为该市2017年月邮政快递业务量柱状图及2018年月邮政快递业务量饼图,根据统计图,解决下列问题

月该市邮政快递同城业务量完成件数与2017年月相比是有所增大还是有所减少,并计算,2018年月该市邮政快递国际及港澳台业务量同比增长率;

若年平均每件快递的盈利如表所示:

快递类型

同城

异地

国际及港澳台

盈利

5

25

估计该市邮政快递在2018年月的盈利是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为等差数列{an}的前n项和,a42S618

1)求an

2)设Tn|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点是抛物线上异于原点的一点,过点作斜率为的两条直线分别交两点(三点互不相同).

1)已知点,求的最小值;

2)若,直线的斜率是,求的值;

3)若,当时,点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥O﹣ABC的侧棱OAOBOC两两垂直,且OA=1OB=OC=2EOC的中点.

1)求异面直线BEAC所成角的余弦值;

2)求直线BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

同步练习册答案