精英家教网 > 高中数学 > 题目详情

【题目】设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1A2B2,使| A1B1|=| A2B2|,其中A1B1A2B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )

A. 2] B. [2 C. + D. [+

【答案】A

【解析】 不妨令双曲线的方程为

及双曲线的对称性知关于轴对称,如图所示,

又因为满足条件的直线只有一对,

当直线与轴的夹角为时,双曲线的渐近线与轴夹角大于

双曲线于直线才能有交点

若双曲线的渐近线与轴的夹角为时,则无交点,则不可能存在

当直线与轴的夹角为时,双曲线渐近线与轴的夹角大于

双曲线与直线有一对交点

若双曲线的渐近线与轴的夹角等于,也满足题中有一对直线,

但是如果大于,则有两对直线,不符合题意,

所以,即,所以

因为,所以,所以

所以,所以双曲线的离心率的范围是,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数a、m满足a= cosxdx,(x+a+m)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7 , 且(a0+a2+a4+a62﹣(a1+a3+a5+a72=37 , 则m=(
A.﹣1或3
B.1或﹣3
C.1
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x,y满足不等式组 ,(2,1)是目标函数z=﹣ax+y取最大值的唯一最优解,则实数a的取值范围是(
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求处的切线方程;

(Ⅱ)证明:对任意正数,函数的图像总有两个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种出口产品的关税税率,市场价格(单位:千元)与市场供应量(单位:万件)之间近似满足关系式:,其中均为常数.当关税税率为时,若市场价格为5千元,则市场供应量约为1万件;当关税税率为时,若市场价格为7千元,则市场供应量约为2万件.

(1)试确定的值;

(2)市场需求量(单位:万件)与市场价格近似满足关系式:.当时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在RtABC中,已知点A-20,直角顶点B0-2,点Cx轴上

1Rt△ABC外接圆的方程;

2求过点-40且与Rt△ABC外接圆相切的直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣1,|an﹣an1|=2n1(n∈N,n≥2),且{a2n1}是递减数列,{a2n}是递增数列,则a2016=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求的值;

(2)若,求函数的单调递增区间;

(3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断函数的奇偶性;

(2)是否存在实数使得的定义域为,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案