精英家教网 > 高中数学 > 题目详情
1.证明:$\root{n}{a}-1<\frac{a-1}{n}$ (其中(a>1,n∈N*且n≥2)

分析 利用二项式定理可知$(1+\frac{a-1}{n})^{n}$=${C}_{n}^{0}$+${C}_{n}^{1}$•$\frac{a-1}{n}$+${C}_{n}^{2}$•$(\frac{a-1}{n})^{2}$+…+${C}_{n}^{n}$•$(\frac{a-1}{n})^{n}$,放缩、整理即得结论.

解答 证明:∵a>1,
∴a-1>0,
∴$(1+\frac{a-1}{n})^{n}$=${C}_{n}^{0}$+${C}_{n}^{1}$•$\frac{a-1}{n}$+${C}_{n}^{2}$•$(\frac{a-1}{n})^{2}$+…+${C}_{n}^{n}$•$(\frac{a-1}{n})^{n}$
>${C}_{n}^{0}$+${C}_{n}^{1}$•$\frac{a-1}{n}$
=1+n•$\frac{a-1}{n}$
=a,
∴1+$\frac{a-1}{n}$>$\root{n}{a}$,即$\root{n}{a}-1<\frac{a-1}{n}$.

点评 本题考查不等式的证明,涉及二项式定理,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.到两条直线3x-4y+5=0和5x-12y+13=0的距离相等的点P(x,y)的坐标必满足方程(  )
A.x-4y+4=0B.7x+4y=0
C.x-4y+4=0或4x-8y+9=0D.7x+4y=0或32x+56y+65=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中a1=1,an+1=an+$\frac{2}{{n}^{2}+2n}$,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足a1=$\frac{1}{2}$,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{\frac{n!}{4},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商场出售一种产品.每天可卖1000件,每件可获利40元.根据经验,若单价每降低1元,则每天可多卖100件,已知每件产品最高获利不超过40元.
(1)求出总获利f(x)与每件的获利x之间的函数关系式,并写出定义域;
 (2)每件获利应定为多少元时,总获利最大?并求最大获利为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.因式分解:x3+4x2-7xy-2y2-8y3=(x-2y)(x2+2xy+4y2+4x+y).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.小明准备参加电工资格证考试,先后进行理论考试和操作考试两个环节,每个环节各有2次考试机会.在理论考试环节,若第1此考试通过,则直接进入操作考试;若第1次未通过,则进行第2次考试,第2次通过后进入操作考试环节,第2次未通过则直接被淘汰.在操作考试环节,若第1次考试通过,则直接获得证书;若第1次为通过,则进行第2此考试,第2次通过后获得证书,第2次未通过则被淘汰.若小明每次理论考试通过的概率为$\frac{3}{4}$,每次操作考试通过的概率为$\frac{2}{3}$,并且每次考试相互独立,则小明本次电工考试中,共参加3次考试的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{(\frac{1}{3})^{x}+p}$+$\sqrt{q-x}$的定义域为[-1,4].
(1)求p,q的值;
(2)已知α,β为方程x2+qx+p=0的两个实数根,求2${α}^{\frac{2}{3}}{β}^{\frac{1}{2}}$(-6${α}^{-\frac{1}{2}}{β}^{\frac{1}{3}}$)÷(-4${α}^{-\frac{5}{6}}{β}^{-\frac{1}{6}}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,an+1=$\frac{5}{2}-\frac{1}{{a}_{n}}$,bn=$\frac{1}{{a}_{n}-2}$.
(1)求证:数列{bn+$\frac{2}{3}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案