精英家教网 > 高中数学 > 题目详情

【题目】已知函数 若关于的不等式的解集非空,且为有限集,则实数的取值集合为___________.

【答案】

【解析】

利用导数,研究的性质和图像;利用换元法,结合二次不等式的解集,结合的函数图像,即可分类讨论求得.

时,,则,令,解得

容易得在区间单调递减,在区间单调递增,

且在时,取得极小值,即;且时,

时,,则,令,解得

容易得在区间单调递增,在区间单调递减,

且在时,取得极大值,即;且时,

的模拟图像如下所示:

综上所述:的值域为.

,则,其,对称轴为

时,显然关于的二次不等式解集为空集,不满足题意;

,即时,

,显然关于的二次不等式的解集为,又

数形结合可知,此时关于的原不等式解集为空集,不满足题意;

,关于的二次不等式的解集为,又

数形结合可知,此时关于的原不等式解集为,满足题意;

,即时,

,解得

显然,故此时关于的不等式的解集为

数形结合可知,要满足题意,只需.

,解得,满足

,解得,不满足,舍去;

综上所述,要满足题意,则.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.

)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;

)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;

)若顾客参加10次抽奖,则最有可能获得多少现金奖励?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市房产中心数据研究显示,2018年该市新建住宅销售均价如下表.3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月份开始出台了相关限购政策,10月份开始房价得到了很好的抑制.

均价(万元/

0.95

0.98

1.11

1.12

1.20

1.22

1.32

1.34

1.16

1.06

月份

3

4

5

6

7

8

9

10

11

12

(Ⅰ)请建立3月至7月线性回归模型(保留小数点后3位),并预测若政府不宏观调控,12月份该市新建住宅销售均价;

(Ⅱ)试用相关系数说明3月至7月各月均价(万元/)与月份之间可用线性回归模型(保留小数点后2位)

参考数据:

回归方程斜率和截距最小二乘法估计公式

相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,直线被椭圆截得的线段长为为坐标原点.

1)求椭圆的方程;

2)是否存在过点且斜率为的直线,与椭圆交于两点时,作线段的垂直平分线分别交轴、轴于,垂足为,使得的面积相等,若存在,试求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布

1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;

22020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.

附:若随机变量,则;

对于一组数据,其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为.(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为,直线的极坐标方程为.

1)求的直角坐标和 l的直角坐标方程;

2)把曲线上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线上动点,求中点到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,.的最大值;

2)若函数有且只有一个零点,且满足条件的,使不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点,点,动圆轴相切于点,过点的直线与圆相切于点,过点的直线与圆相切于点均不同于点),且交于点,设点的轨迹为曲线.

(1)证明:为定值,并求的方程;

(2)设直线的另一个交点为,直线交于两点,当三点共线时,求四边形的面积.

查看答案和解析>>

同步练习册答案