【题目】袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.
(1)求取球2次即终止的概率;
(2)求甲取到白球的概率.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,已知M,N分别为线段BB1,A1C的中点,MN⊥AA1,且MA1=MC.求证:
(1)MN平面ABC;
(2)平面A1MC⊥平面A1ACC1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.
(1)若D为线段AC的中点,求证:AC⊥平面PDO;
(2)求三棱锥P-ABC体积的最大值;
(3)若,点E在线段PB上,求CE+OE的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是公差为2的等差数列,且成等比数列.数列满足:,.
(Ⅰ)求数列,的通项公式;
(Ⅱ)设数列的前n项和为,且,若对,恒成立,求正整数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA1,E是A1C的中点.
(1)若P为AB的中点证明:DE∥平面PBA1.
(2)若平面PDA1⊥平面PDA,且DE⊥平面CBA1,求二面角P﹣A1D﹣C的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com