精英家教网 > 高中数学 > 题目详情

【题目】袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.

1)求取球2次即终止的概率;

2)求甲取到白球的概率.

【答案】1;(2

【解析】

1)第二次终止即:第一次摸到黑球第二次摸到白球;

2)根据规则,甲取到白球必须可能是第1,3,5次出现白球,且在摸到白球之前乙摸到黑球,结合树状图求解.

1)设事件A取球2次即终止”.即甲第一次取到的是黑球而乙取到的是白球,借助树状图求出相应事件的样本点数:

因此,.

2)设事件B甲取到白球i次取到白球为事件,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.借助树状图求出相应事件的样本点数:

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是等腰梯形,.

(1)证明:平面平面

(2)点E是棱PC上一点,且平面,求二面角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,已知MN分别为线段BB1A1C的中点,MNAA1,且MA1MC.求证:

1MN平面ABC

2)平面A1MC⊥平面A1ACC1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.

(1)若D为线段AC的中点,求证:AC⊥平面PDO;

(2)求三棱锥P-ABC体积的最大值;

(3)若,点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系xOy中,设倾斜角为α的直线lt为参数)与曲线Cθ为参数)相交于不同的两点AB

)若α,求线段AB中点M的坐标;

)若|PA·PB|=|OP,其中P2),求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为2的等差数列,且成等比数列.数列满足:.

)求数列的通项公式;

)设数列的前n项和为,且,若对恒成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p;命题q:方程表示双曲线.

⑴若命题p为真命题,求实数m的取值范围;

⑵若命题为真命题,为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在ABC中,B90°ABBC2PAB边上一动点,PDBCAC于点D,现将PDA沿PD翻折至PDA1EA1C的中点.

1)若PAB的中点证明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求二面角PA1DC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若函数恰好有2个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案