精英家教网 > 高中数学 > 题目详情
16.若$\frac{a}{b}$=$\frac{c}{d}$,则下列各式一定成立的是(  )
A.$\frac{a+b}{b}$=$\frac{c+d}{c}$B.$\frac{a+c}{c}$=$\frac{b+d}{d}$C.$\frac{a-c}{c}$=$\frac{b-d}{b}$D.$\frac{a-c}{a}$=$\frac{b-d}{d}$

分析 令$\frac{a}{b}$=$\frac{c}{d}$=k⇒a=kb,c=kd,
对于A,$\frac{a+b}{b}=\frac{kb+b}{b}=k+1,\frac{c+d}{c}=\frac{kd+d}{kd}=\frac{k+1}{k}$;对于B,$\frac{a+c}{c}=\frac{kb+kd}{xd}=\frac{b+d}{d}$;对于C,$\frac{a-c}{c}=\frac{kb-kd}{kd}=\frac{b-d}{d}$;对于D,$\frac{a-c}{a}=\frac{kb-kd}{kb}=\frac{b-d}{b}$.

解答 解:令$\frac{a}{b}$=$\frac{c}{d}$=k⇒a=kb,c=kd,
对于A,$\frac{a+b}{b}=\frac{kb+b}{b}=k+1,\frac{c+d}{c}=\frac{kd+d}{kd}=\frac{k+1}{k}$,故A错;
对于B,$\frac{a+c}{c}=\frac{kb+kd}{xd}=\frac{b+d}{d}$故B正确;
对于C,$\frac{a-c}{c}=\frac{kb-kd}{kd}=\frac{b-d}{d}$,故错;对于D,$\frac{a-c}{a}=\frac{kb-kd}{kb}=\frac{b-d}{b}$,故错.
故选:B.

点评 本题考查了比例式的性质,找中间量是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设θ为第二象限角,若tan(θ+$\frac{π}{4}$)=$\frac{1}{2}$,则sinθ+cosθ=(  )
A.$-\frac{{\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$-\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知两条不同的直线m,n和平面α,下列说法正确的是(  )
A.如果m?α,n?α,m、n是不在任何同一个平面内的直线,那么n∥α
B.如果m?α,n?α,m、n是不在任何同一个平面内的直线,那么n与α相交
C.如果m∥α,n∥α,m、n共面,那么m∥n
D.如果m?α,n∥α,m、n共面,那么m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{1-x}+\sqrt{x}$的定义域为(  )
A.(-∞,1]B.[0,1]C.[0,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-(a-2)x+a-4;
(1)若函数y=f(x)在区间[1,2]上的最小值为4-a,求实数a的取值范围;
(2)是否存在整数m,n,使得关于x的不等式m≤f(x)≤n的解集恰好为[m,n],若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{5}-\frac{y^2}{4}=1$的(  )
A.实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±\frac{{2\sqrt{5}}}{5}x$,离心率$e=\frac{{3\sqrt{5}}}{5}$
B.实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±\frac{{\sqrt{5}}}{5}x$,离心率$e=\frac{9}{5}$
C.实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±2\sqrt{5}x$,离心率$e=\frac{6}{5}$
D.实轴长为$2\sqrt{5}$,虚轴长为8,渐近线方程为$y=±\frac{{\sqrt{5}}}{2}x$,离心率$e=\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数z满足$z+i=\frac{2-i}{i}$,则复数z的模为(  )
A.10B.$\sqrt{10}$C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若偶函数f(x)在区间[-3,-1]上有最大值6,则f(x)在区间[1,3]上有(  )
A.最大值6B.最小值6C.最大值-6D.最小值-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC1和△ABC2是两个腰长均为1的等腰直角三角形,当二面角C1-AB-C2为60°时,点C1和C2之间的距离等于$\sqrt{2},1,\frac{{\sqrt{2}}}{2}$.(请写出所有可能的值)

查看答案和解析>>

同步练习册答案