精英家教网 > 高中数学 > 题目详情

【题目】要得到函数y=sin(2x+ )的图象,只需将y=cos(2x﹣ )图象上的所有点(
A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向右平行移动 个单位长度

【答案】D
【解析】解:y=cos(2x﹣ )=sin(2x﹣ + )=sin(2x+ ), y=sin(2x+ )=sin[2(x﹣ )+ ],
∴要得到函数y=sin(2x+ )的图象,
只需将y=cos(2x﹣ )图象上的所有点向右平行移动 个单位长度,
故选D.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=(lnx)ln(1﹣x).
(1)求函数y=f(x)的图象在( ,f( ))处的切线方程;
(2)求函数y=f′(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= sin2x+sinxcosx﹣
(1)求f(x)的单调增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)= ,b+c=4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C: (θ为参数),直线l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
(Ⅰ)写出曲线C和直线l2的普通方程;
(Ⅱ)l1与C交于不同两点M,N,MN的中点为P,l1与l2的交点为Q,l1恒过点A,求|AP||AQ|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为F(2,0),点P(2, )在椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线,交椭圆C于A、B两点,点M在椭圆C上,坐标原点O恰为△ABM的重心,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第31届夏季奥林匹克运动会将于2016年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).

第30届伦敦

第29届北京

第28届雅典

第27届悉尼

第26届亚特兰大

中国

38

51

32

28

16

俄罗斯

24

23

27

32

26

(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为 ,丙猜中国代表团的概率为 ,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在2012﹣2016年的收入与支出情况如表所示:

收入x(亿元)

2.2

2.6

4.0

5.3

5.9

支出y(亿元)

0.2

1.5

2.0

2.5

3.8

根据表中数据可得回归直线方程为 =0.8x+ ,依次估计如果2017年该公司收入为7亿元时的支出为(
A.4.5亿元
B.4.4亿元
C.4.3亿元
D.4.2亿元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 + =1(a>b>0)的上顶点为A,左右顶点为B,C,右焦点为F,|AF|=3,且△ABC的周长为14.
(1)求椭圆的离心率;
(2)过点M(4,0)的直线l与椭圆相交于不同两点P,Q,点N在线段PQ上,设λ= = ,试判断点N是否在一条定直线上,并求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x,焦点为F,过点P(﹣1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,直线AF,BF分别交抛物线C于M,N两点,若 + =18,则k=

查看答案和解析>>

同步练习册答案