【题目】已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.
(1)若,求直线的方程;
(2)设关于轴的对称点为,证明:直线过轴上的定点.
【答案】(1)或;(2)见解析
【解析】
(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;
(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.
(1)由条件可知直线的斜率存在,则
可设直线的方程为,则,
由,有,
所以,
由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,
故所求直线方程为或.
(也可联立直线与椭圆方程,由验证)
(2)设,则,
直线的方程为.
由得,
由,
解得,
,
当时,,
故直线恒过定点.
科目:高中数学 来源: 题型:
【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音、短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访140位市民进行调查,其中每天玩微信超过6小时的用户称为“微信控”,否则称其为“非微信控”, 调查结果统计如下:
微信控 | 非微信控 | 合计 | |
女性 | 60 | ||
男性 | 30 | ||
合计 | 70 | 140 |
(1)根据以上数据,把表格中的数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
①是否在犯错误的概率不超过0.001的前提下认为“微信控”与“性别”有关;
②已知在被调查的女性“微信控”市民中有5位退休老人,其中2位是教师,现从这5位退休老人中随机抽取2人,求至少有1位老师的概率.
附表:其中
P(K2≥k) | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.
(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的极坐标方程;
(2)若点,为曲线上两动点,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com