精英家教网 > 高中数学 > 题目详情
(本小题满分14分)如图,正方体的棱长为2EAB的中点.(Ⅰ)求证:(Ⅱ)求异面直线BD1CE所成角的余弦值;(Ⅲ)求点B到平面的距离.
(Ⅰ) 见解析  (Ⅱ)  (Ⅲ)
法一:(1)连接BD,由已知有   
…………1分
又由ABCD是正方形,得:……2分     ∵相交,∴……3分
(2)延长DC至G,使CG=EB,,连结BG、D1G ,∵CG∥EB ,∴四边形EBGC是平行四边形.                                 
∴BG∥EC.  ∴就是异面直线BD1与CE所成角…………………………5分
中,   …………………6分
 
异面直线 CE所成角的余弦值是………8分
(3)∵     又∵    ∴ 点E到的距离,有:   ,…………11分
又由 , 设点B到平面的距离为
 , 有, 所以点B到平面的距离为…14分
解法二:(1)见解法一…3分
(2)以D为原点,DA、DC、轴建立空间直角坐标系,则有B(2,2,0)、(0,0,2)、E(2,1,0)、C(0,2,0)、(2,0,2)∴(-2,-2,2),(2,-1,0)………5分
……7分即余弦值是   8分
(3)设平面的法向量为, 有:,…8分
由:(0,1,-2),(2,-1,0)………9分
可得:,令,得 ………11分
(0,1,0)有:点B到平面的距离为…14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知ABCD是矩形,EF分别是线段ABBC的中点,ABCD.  (1)证明:PFFD
(2)在PA上找一点G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱锥中,
D是AC的中点,.
(1)求证:(5分)
(2)(理科)求二面角的大小。(7分)
(文科)求二面角平面角的大小。(7分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,CD//ABEAB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角的大小为1200
(I)求证:
(II)求直线PD与平面BCDE所成角的大小;
(III)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是直角梯形,平面
(1) 证明:
(2) 在上是否存在一点,使得∥平面?若存在,找出点,并证明:∥平面;若不存在,请说明理由;
(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知上的点.
(1)当
(2)当二面角的大小为的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:
(1)求MN和PQ所成角的大小;
(2)求四面体M—NPQ的体积与正方体的体积之比;
(3)求二面角M—NQ—P的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与顶点组成的平面(相同的平面算一个)构成的“正交线面对”的个数是
A.24B.36C.44D.56

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一个圆锥的底面半径为2cm,高为      6cm,其中有一个高为  cm的内接圆柱.   
(1)试用表示圆柱的侧面积;(2)当为何值时,圆柱的侧面积最大.
 

查看答案和解析>>

同步练习册答案