【题目】已知圆O:x2+y2=9及点C(2,1),过点C的直线l与圆O交于P,Q两点,当△OPQ的面积最大时,直线l的方程为________.
【答案】x+y-3=0或7x+y-15=0
【解析】
当直线l的斜率不存在时,S△OPQ=2,当直线l的斜率存在时,设l的方程为y﹣1=k(x﹣2),(k),求圆心到直线PQ的距离d,得|PQ|=2,利用基本不等式求面积最值,由此能求出直线l的方程.
当直线l的斜率不存在时,l的方程为x=2,则P、Q的坐标为(2,),(2,),
∴S△OPQ2,
当直线l的斜率存在时,设l的方程为y﹣1=k(x﹣2),(k),
则圆心到直线PQ的距离为d,则|PQ|=2,
∴S△OPQd,
当且仅当9﹣d2=d2,即d2时,S△OPQ取得最大值,
∵,∴S△OPQ的最大值为,
此时,由,解得k=﹣7或k=﹣1.
此时,直线l的方程为x+y﹣3=0或7x+y﹣15=0.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: (为参数)
(1)求圆和直线的极坐标方程;
(2)点 的极坐标为,直线与圆相较于,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值
为,当时,产品为一级品;当时,产品为二级品,当时,产品为三级品,现用两种新配方(分别称为配方和配方)做实验,各生产了100件这种产品,
并测量了每件产品的质量指标值,得到下面的试验结果:(以下均视频率为概率)
配方的频数分配表
指标值分组 | ||||
频数 | 10 | 30 | 40 | 20 |
配方的频数分配表
指标值分组 |
| ||||
频数 | 5 | 10 | 15 | 40 | 30 |
(Ⅰ)若从配方产品中有放回地随机抽取3件,记“抽出的配方产品中至少1件二级品”为事件,求事件发生的概率;
(Ⅱ)若两种新产品的利润率与质量指标满足如下关系:其中,从长期来看,投资哪种配方的产品平均利润率较大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”的命中率为,“三步上篮”的命中率为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.
(1)求小华同学两项测试均合格的概率;
(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是定义域为R的偶函数.当x≥0时,,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.
(Ⅰ)求曲线的直角坐标方程与直线的参数方程;
(Ⅱ)设直线与曲线交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com