【题目】已知函数 .
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最大值;
(3)对任意,恒有,求实数的取值范围.
【答案】(1)函数的单调递增区间为 , (2)函数取得最大值 (3)
【解析】
(1)将代入函数,去掉绝对值得到分段函数,然后分别求导,利用导数求函数的单调区间.
(2),则,对函数求导,判断单调性,根据单调性即可得出函数在区间上的最大值.
(3)由(1)(2)得,,分情况讨论、时函数的单调性,从而得出实数的取值范围.
(1)当时, ,
若时,则,令,解得;
若时,则恒成立,所以,
所以函数的单调递增区间为 ,.
(2)若,当时, ,.
令,解得或.
列表如下:
当时,函数取得最大值.
(3)由(1)(2)得,.
①当时,即时,
,即.
因为在上单调递增,
所以当时, 取得最小值,
所以,解得,又,所以.
②当即时,
当时,,即,
与矛盾,
所以,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.
(I)求椭圆C的方程和点T的坐标;
(Ⅱ)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);
(3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业积极响应国家“科技创新”的号召,大力研发人工智能产品,为了对一批新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如下表所示:
试销单价(百元) | 1 | 2 | 3 | 4 | 5 | 6 |
产品销量(件) | 91 | 86 | 78 | 73 | 70 |
附:参考公式:,,
参考数据:,,.
(1)求的值;
(2)已知变量,具有线性相关关系,求产品销量(件)关于试销单价(百元)的线性回归方程(计算结果精确到整数位);
(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“有效数据”.现从这6组销售数据中任取2组,求抽取的2组销售数据都是“有效数据”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:
(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);
(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;
(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱个. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,,,,,,为线段的中点.
(Ⅰ)求直线与平面所成角的余弦值;
(Ⅱ)求二面角的大小;
(Ⅲ)若在段上,且直线与平面相交,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com