精英家教网 > 高中数学 > 题目详情

【题目】已知正方体,过对角线作平面交棱于点E,交棱于点F,则:

①平面分正方体所得两部分的体积相等;

②四边形一定是平行四边形;

③平面与平面不可能垂直;

④四边形的面积有最大值.

其中所有正确结论的序号为(

A.①④B.②③C.①②④D.①②③④

【答案】C

【解析】

根据正方体的性质对每个命题进行判断.结合排除法可选正确结论.

截面上方几何体分割成四棱锥四棱锥,四棱锥,三棱锥,截面下方几何体对称的也是三个棱锥,对应体积相等(特殊位置截面更容易得此结论),①正确,排除B;

由正方体相对两个面平行,根据面面平行的性质定理知四边形的两组对边平行,从而是平行四边形,②正确,排除A;

中点,中点,这时可证平面(先证),从而平面与平面垂直,③错误,排除D,

只有C可选了.

事实上,四边形即有最大值也有最小值.(或)重合时面积最大,中点时,面积最小.

,正方体棱长为1,

中,

所以

所以

所以或1时,取得最大值.④正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,为直三棱柱,四边形为平行四边形, .

1)若,证明:四点共面,且

2)若,二面角的余弦值为,求直线与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面ABCD是边长为3的正方形,平面ADEF⊥平面ABCDAFDEADDEAFDE.

1)求直线CA与平面BEF所成角的正弦值;

2)在线段AF上是否存在点M,使得二面角MBED的大小为60°?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)直线轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴的建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程;

2)若点与点分别为曲线动点,求的最小值,并求此时的点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中,平面平面.

1)证明:

2)设,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求直线与曲线相切时,切点的坐标;

2)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为3的正方体ABCD-A1B1C1D1中,A1ECF1.

1)求两条异面直线AC1BE所成角的余弦值;

2)求直线BB1与平面BED1F所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为12…,7的球槽内.例如小球要掉入3号球槽,则在前5次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以的概率向左滚下,或在前5次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以的概率向右滚下.

(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;

(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入X号球槽得到的奖金为元,其中.

i)求X的分布列:

ii)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?

查看答案和解析>>

同步练习册答案