精英家教网 > 高中数学 > 题目详情

【题目】已知函数,(.

(Ⅰ)若函数有且只有一个零点,求实数的取值范围;

(Ⅱ)设,若,若函数对恒成立,求实数的取值范围.是自然对数的底数,

【答案】

【解析】

(Ⅰ)首先确定函数定义域为,求出导数;当时,可知函数单调递增,根据可知满足题意;当时,可求得导函数的零点;当零点可知满足题意;当结合函数的单调性和零点存在性定理可判断出存在不止一个零点,不满足题意;综合上述情况得到结果;(Ⅱ)当时,可知,得到,满足题意;当时,根据符号可知单调递增,由零点存在性定理可验证出,使得,从而得到上单调递减,则,不满足题意,从而得到结果.

(Ⅰ)由题意得:定义域为,则

①当时,恒成立 上单调递增

有唯一零点,即满足题意

②当

时,;当时,

上单调递减,在上单调递增

⑴当,即时,有唯一零点,满足题意

⑵当,即时,

,且

,使得,不符合题意

⑶当,即时,

,则

上单调递增 ,即

,使得,不符合题意

综上所述:的取值范围为:

(Ⅱ)由题意得:,则

①当时,由得:恒成立

上单调递增

满足题意

②当时,恒成立 上单调递增

,使得

时,,即上单调递减

,则不符合题意

综上所述:的取值范围为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,右焦点到直线的距离为.

1)求椭圆的标准方程;

2)定义两点所在直线的斜率,若四边形为椭圆的内接四边形,且相交于原点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列 满足: 或1().对任意,都存在,使得.,其中 且两两不相等.

(I)若.写出下列三个数列中所有符合题目条件的数列的序号;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)记.若,证明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若函数有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2|x1||x2|.

(1)f(x)的最小值m

(2)abc均为正实数,且满足abcm,求证:≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济水平及个人消费能力的提升,我国居民对精神层面的追求愈加迫切,如图是2007年到2017年我国城镇居民教育、文化、服务人均消费支出同比增速的折线图,图中显示2007年的同比增速为10% 2007年与2006年同时期比较2007年的人均消费支出费用是2006年的1.1.则下列表述中正确的是(

A.2007年到2017年,同比增速的中位数约为10%

B.2007年到2017年,同比增速的极差约为12%

C.2011年我国城镇居民教育、文化、服务人均消费支出的费用最高

D.2007年到2017年,我国城镇居民教育、文化、服务人均消费支出的费用逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面是线段上一点,且.三棱锥的各个顶点都在球表面上,过点作球的截面,若所得截面圆的面积的最大值与最小值之差为,则球的表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知棱两两垂直,长度分别为1,2,2.若),且向量夹角的余弦值为.

(1)求的值;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案