精英家教网 > 高中数学 > 题目详情
19.已知数列{an}各项均为正数,Sn为该数列的前项和,${a_1}=1,2{S_n}={a_n}•{a_{n+1}}({N∈{n^*}})$,满足不等式${log_2}({1+\frac{1}{a_1}})+{log_2}({1+\frac{1}{a_2}})+{log_2}({1+\frac{1}{a_n}})>5$的正整数n的最小值为32.

分析 利用数列递推关系与等差数列的通项公式可得an,利用“累乘求积”与对数的运算性质即可得出.

解答 解:∵${a_1}=1,2{S_n}={a_n}•{a_{n+1}}({N∈{n^*}})$,∴2×1=1×a2,解得a2=2.
n≥2时,2an=2(Sn-Sn-1)=an(an+1-an-1),an>0,化为:an+1-an-1=2.
∴数列{an}的奇数项与偶数项分别成等差数列,公差为2.
∴a2k-1=1+2(k-1)=2k-1,a2k=2+2(k-1)=2k,k∈N*
∴an=n.
∴$(1+\frac{1}{{a}_{1}})$$•(1+\frac{1}{{a}_{2}})$•…$•(1+\frac{1}{{a}_{nz}})$=$\frac{2}{1}×\frac{3}{2}×$…×$\frac{n+1}{n}$=n+1.
∴不等式${log_2}({1+\frac{1}{a_1}})+{log_2}({1+\frac{1}{a_2}})+{log_2}({1+\frac{1}{a_n}})>5$化为:log2(n+1)>5,解得n+1>25
因此满足不等式${log_2}({1+\frac{1}{a_1}})+{log_2}({1+\frac{1}{a_2}})+{log_2}({1+\frac{1}{a_n}})>5$的正整数n的最小值为32.
故答案为:32.

点评 本题考查了数列递推关系与等差数列的通项公式、“累乘求积”与对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知p:x<8,q:x<a,且q是p的充分而不必要条件,则a的取值范围为a<8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC各角的对应边分别为a,b,c,满足$\frac{a}{b+c}+\frac{b}{a+c}≥1$,则角C的范围是(  )
A.$(0,\frac{π}{3}]$B.$(0,\frac{π}{6}]$C.$[\frac{π}{3},π)$D.$[\frac{π}{6},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列4,a,9是等比数列是“a=±6”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+a|+|x+3|,g(x)=|x-1|+2.
(1)解不等式|g(x)|<3;
(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=-2sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2))若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|•|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在Rt△AOB中,$\overrightarrow{OA}•\overrightarrow{OB}=0$,$|\overrightarrow{OA}|=\sqrt{5}$,$|\overrightarrow{OB}|=2\sqrt{5}$,AB边上的高线为OD,点E位于线段OD上,若$\overrightarrow{OE}•\overrightarrow{EA}=\frac{3}{4}$,则向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{5i}{2-i}$=(  )
A.1+2iB.-1+2iC.-1-2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线x+y-2=0与坐标轴围成的三角形的面积为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案