精英家教网 > 高中数学 > 题目详情
分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是  (  )
A.B.
C.D.
D.

试题分析:先根据可确定,进而可得到时单调递增,结合函数分别是定义在上的奇函数和偶函数可确定时也是增函数.于是构造函数上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

是函数的一个极值点.
(1)求的关系式(用表示),并求的单调区间;
(2)设在区间[0,4]上是增函数.若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若对任意x1∈[0,1],存在x2∈[1,2],使,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中.
(1)求函数的定义域(用区间表示);
(2)讨论函数上的单调性;
(3)若,求上满足条件的集合(用区间表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x3-2x2+x-3,求f′(2)=(  )
A.-1B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知在R上可导的函数的图象如图所示,则不等式的解集为(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中a为常数.
(1)若当恒成立,求a的取值范围;
(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的单调减区间是,求实数a的值;
(2)若函数在区间上都为单调函数且它们的单调性相同,求实数a的取值范围;
(3)a、b是函数的两个极值点,a<b,。求证:对任意的,不等式成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数.若实数a, b满足, 则 (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案