精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.
(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖.求证:若时,函数在区间上被函数覆盖.

(1)
(2)综上知,存在a=-2e满足题意;(3)见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义函数
(1)令函数的图象为曲线,若存在实数,使得曲线处有斜率是的切线,求实数的取值范围;
(2)当,且时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(Ⅰ)分别求出的值;
(Ⅱ)根据(Ⅰ)中所求得的结果,请写出之间的等式关系,并证明这个等式关系;
(Ⅲ)根据(Ⅱ)中总结的等式关系,
请计算表达式
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数的图像关于原点对称,并且当时,,试求上的表达式,并画出它的图像,根据图像写出它的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
( Ⅱ) 设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设 x1、x2)是函数 )的两个极值点.
(I)若 ,求函数  的解析式;
(II)若 ,求 b 的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0且a≠1,
(1)判断函数f(x)是否有零点,若有求出零点;
(2)判断函数f(x)的奇偶性;
(3)讨论f(x)的单调性并用单调性定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对定义在上,并且同时满足以下两个条件的函数称为H函数.
① 对任意的,总有
② 当时,总有成立.
已知函数是定义在上的函数.
(1)试问函数是否为H函数?并说明理由;
(2)若函数是H函数,求实数a的值;
(3)在(2)的条件下,若方程有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案