精英家教网 > 高中数学 > 题目详情
16、将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有
240
种.(以数字作答)
分析:由分步计数原理知,从10个盒中挑3个与球标号不一致,共C103种挑法,每一种3个盒子与球标号全不一致的方法为2种,根据分步计数原理得到结果.
解答:解:由分步计数原理知
从10个盒中挑3个与球标号不一致,共C103种挑法,
每一种3个盒子与球标号全不一致的方法为2种,
∴共有2C103=240种.
故答案为:240.
点评:对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不一致的放入方法种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将标号为1,2,…,5的5个球放入标号为1,2,…,5的5个盒子内,.每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将标号为1,2,…,9的9个球放入标号为1,2,…,9的9个盒子里,每个盒内放一个球,恰好3个球的标号与其所在盒子的标号不一致的放入方法种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,则标号为1,2的卡片放入同一个信封的概率为
 

查看答案和解析>>

同步练习册答案