精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在处的切线与函数的图象在处的切线互相平行.

1)求的值;

2)若恒成立,求实数的取值范围;

3)若数列的前项和为,求证:.

【答案】1;(2;(3)见详解

【解析】

1)根据曲线在某点处的导数的几何意义,可得与函数的图象在处的导数,由于切线平行,可得结果

(2)利用分离参数的方法,得到,然后构建函数,利用导数研究函数的单调性,根据的值域与的大小关系,可得结果.

3)根据(2),得到,然后令代入,两边取对数,进行化简,结合不等式可得,最后求和可得结果.

1)由,所以

,又

所以,据题意可知:

2)由(1)可知

恒成立,

恒成立,

时,

时,

所以单调递减,

单调递增,

所以

所以

所以实数的取值范围为

3)由(2)可知:

时,,即

,所以,两边取对数,

可得

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)记,试判断函数的极值点的情况;

(Ⅱ)若有且仅有两个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法不正确的是(

A.为真为真的充分不必要条件;

B.若数据的平均数为1,则的平均数为2

C.在区间上随机取一个数,则事件发生的概率为

D.设从总体中抽取的样本为若记样本横、纵坐标的平均数分别为,则回归直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)求函数的定义域(用区间表示);

2)讨论函数上的单调性;

3)若,求上满足条件的集合(用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市房管局为了了解该市市民月至月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市月至月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应月至月).

1)试估计该市市民的购房面积的中位数

2)现采用分层抽样的方法从购房面积位于位市民中随机抽取人,再从这人中随机抽取人,求这人的购房面积恰好有一人在的概率;

3)根据散点图选择两个模型进行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值如下表所示:

0.000591

0.000164

0.006050

请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出月份的二手房购房均价(精确到

(参考数据)

(参考公式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进位制是人们为了计数和运算方便而约定的计数系统,“满几进一”就是几进制,不同进制之间可以相互转化,例如把十进制的89转化为二进制,根据二进制数“满二进一”的原则,可以用2连续去除89得商,然后取余数,具体计算方法如下:

把以上各步所得余数从下到上排列,得到89=1011001(2)这种算法叫做“除二取余法”,上述方法也可以推广为把十进制数化为k进制数的方法,称为“除k取余法”,那么用“除k取余法”把89化为七进制数为_

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断在定义域上的单调性;

2)若对定义域上的任意的,有恒成立,求实数a的取值范围;

3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线方程为,求实数的值;

2)若,且在区间上恒成立,求实数的取值范围;

3)若,且,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为且满足,当时,.

1)判断上的单调性并加以证明;

2)若方程有实数根,则称为函数的一个不动点,设正数为函数的一个不动点,且,求的取值范围.

查看答案和解析>>

同步练习册答案