精英家教网 > 高中数学 > 题目详情
给出下列命题:
,使得;    ②曲线表示双曲线;
的递减区间为 ④,使得其中真命题为       (填上序号)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为, 点是椭圆的一个顶点,△是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,证明:直线过定点().

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本题满分15分)长为3的线段的两个端点分别在轴上移动,点在直线上且满足.(I)求点的轨迹的方程;(II)记点轨迹为曲线,过点任作直线交曲线两点,过作斜率为的直线交曲线于另一点.求证:直线与直线的交点为定点(为坐标原点),并求出该定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,顶点A,B,动点D,E满足:①;②,③共线.
(Ⅰ)求△ABC顶点C的轨迹方程;
(Ⅱ)是否存在圆心在原点的圆,只要该圆的切线与顶点C的轨迹有两个不同交点M,N,就一定有,若存在,求该圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=4x2的焦点坐标是(   )
A.(1,0)B.(0,1)C.(,0)D.(0,)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是抛物线的焦点,Q是准线与x轴的交点,直线经过点Q。
(Ⅰ)直线与抛物线有唯一公共点,求方程;
(Ⅱ)直线与抛物线交于A、B两点;
(i)设FA、FB的斜率分别为,求的值;
(ii)若点R在线段AB上,且满足,求点R的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为
(1)求椭圆的离心率;
(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的准线与双曲线的左准线重合,则p的值为 ▲  

查看答案和解析>>

同步练习册答案