精英家教网 > 高中数学 > 题目详情

若a>0,数学公式=数学公式,则a=________,数学公式=________.

    3
分析:由a>0,==,知,由此能求出a和的值.
解答:∵a>0,==

∴a==
==3.
故答案为:
点评:本题考查指数与对数式和对数式的互化,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中:
①若
a
b
=0,则
a
=
0
b
=
0
; 
②若不平行的两个非零向量
a
b
满足|
a
|=|
b
|,则(
a
+
b
)•(
a
-
b
)=0;  
③若
a
b
平行,则|
a
b
|=|
b
a
|
;  
④若
a
b
b
c
,则
a
c

其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述错误的是
①②③④⑤⑥
①②③④⑤⑥

①若
a
b
b
c
,则
a
c

②若非零向量
a
b
方向相同或相反,则
a
+
b
a
b
之一的方向相同;
③|
a
|+|
b
|=|
a
+
b
|?
a
b
方向相同;
④向量
b
与向量
a
共线的充要条件是有且只有一个实数λ,使得
b
a

AB
+
BA
=0

⑥若λ
a
b
,则
a
=
b

查看答案和解析>>

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

科目:高中数学 来源:黑龙江省模拟题 题型:填空题

下列使用类比推理所得结论正确的序号是(    )。
(1)直线a,b,c,若a∥b,b∥c,则a∥c。类推出:向量,若
(2)同一平面内,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b。类推出:空间中,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b
(3)任意a,b∈R,a-b>0则a>b。类比出:任意a,b∈C,a-b>0则a>b
(4)以点(0,0)为圆心,r为半径的圆的方程是x2+y2=r2。类推出:以点(0,0,0)为球心,r为半径的球的方程是x2+y2+z2=r2

查看答案和解析>>

同步练习册答案