精英家教网 > 高中数学 > 题目详情

【题目】某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为123455个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励元(为三位数的百位上的数字,如三位数为234,则奖励元).

1)求抽奖者在一次抽奖中所得三位数是奇数的概率;

2)求抽奖者在一次抽奖中获奖金额的概率分布与期望.

【答案】12)见解析,期望是150.

【解析】

1)首先利用排列求出摸三次的总的基本事件个数:;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.

2)获奖金额的可能取值为50100200300400500,求出各个随机变量的分布列,利用均值公式即可求解.

解:(1)因为总的基本事件个数,摸到三位数是奇数的事件数,所以

所以摸到三位数是奇数的概率.

2)获奖金额的可能取值为50100200300400500

获奖金额的概率分布为

50

100

200

300

400

500

均值.

所以期望是150.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axlnxx2ax+1aR)在定义域内有两个不同的极值点.

1)求实数a的取值范围;

2)设两个极值点分别为x1x2x1x2,证明:fx1+fx2)<2x12+x22.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数ab满足a2+b2-ab3

1)求a-b的取值范围;

2)若ab0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面平面ABCPP在平面ABC的同侧,二面角的平面角为钝角,Q到平面ABC的距离为是边长为2的正三角形,.

1)求证:面平面PAB

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,为四边形对角线交点,为棱的中点,且平面.

1)证明:平面

2)证明:四边形为矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的离心率为,点在椭圆C上,直线与椭圆C交于不同的两点AB.

1)求椭圆C的方程;

2)直线分别交y轴于MN两点,问:x轴上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了实施科技下乡,精准脱贫战略,某县科技特派员带着三个农业扶贫项目进驻某村,对该村仅有的甲、乙、丙、丁四个贫困户进行产业帮扶.经过前期实际调研得知,这四个贫困户选择三个扶贫项目的意向如下表:

扶贫项目

贫困户

甲、乙、丙、丁

甲、乙、丙

丙、丁

若每个贫困户只能从自己已登记的选择意向项目中随机选取一项,且每个项目至多有两个贫困户选择,则不同的选法种数有(

A.24B.16C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线.

1)写出曲线的普通方程和曲线的直角坐标方程;

2)若曲线上有一动点,曲线上有一动点,求的最小值.

查看答案和解析>>

同步练习册答案