【题目】某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1、2、3、4、5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励元(为三位数的百位上的数字,如三位数为234,则奖励元).
(1)求抽奖者在一次抽奖中所得三位数是奇数的概率;
(2)求抽奖者在一次抽奖中获奖金额的概率分布与期望.
【答案】(1)(2)见解析,期望是150元.
【解析】
(1)首先利用排列求出摸三次的总的基本事件个数:;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.
(2)获奖金额的可能取值为50、100、200、300、400、500,求出各个随机变量的分布列,利用均值公式即可求解.
解:(1)因为总的基本事件个数,摸到三位数是奇数的事件数,所以;
所以摸到三位数是奇数的概率.
(2)获奖金额的可能取值为50、100、200、300、400、500,
,,,
,,,
获奖金额的概率分布为
50 | 100 | 200 | 300 | 400 | 500 | |
均值元.
所以期望是150元.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=axlnx﹣x2﹣ax+1(a∈R)在定义域内有两个不同的极值点.
(1)求实数a的取值范围;
(2)设两个极值点分别为x1,x2,x1<x2,证明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面平面ABC,P、P在平面ABC的同侧,二面角的平面角为钝角,Q到平面ABC的距离为,是边长为2的正三角形,,,.
(1)求证:面平面PAB;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的离心率为,点在椭圆C上,直线与椭圆C交于不同的两点A,B.
(1)求椭圆C的方程;
(2)直线,分别交y轴于M,N两点,问:x轴上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着,,三个农业扶贫项目进驻某村,对该村仅有的甲、乙、丙、丁四个贫困户进行产业帮扶.经过前期实际调研得知,这四个贫困户选择,,三个扶贫项目的意向如下表:
扶贫项目 | |||
贫困户 | 甲、乙、丙、丁 | 甲、乙、丙 | 丙、丁 |
若每个贫困户只能从自己已登记的选择意向项目中随机选取一项,且每个项目至多有两个贫困户选择,则不同的选法种数有( )
A.24种B.16种C.10种D.8种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线:(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线:.
(1)写出曲线的普通方程和曲线的直角坐标方程;
(2)若曲线上有一动点,曲线上有一动点,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com