精英家教网 > 高中数学 > 题目详情
10.设双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为e,则斜率为k的直线与双曲线C的左、右两支都相交的充要条件是(  )
A.k2-e2>1B.k2-e2<1C.e2-k2>1D.e2-k2<1

分析 设直线方程为:y=k(x-c)代入双曲线方程得:(b2-a2k2)x2+2a2k2cx-a2k2c2-a2b2=0,方程有两根,x1•x2=(-a2k2c2-a2b2)÷(b2-a2k2)<0,因-a2k2c2-a2b2必定小于0,故只需:b2-a2k2>0即可,由此能求出结果.

解答 解:由题意可设直线方程为:y=k(x-c)代入双曲线方程得:
(b2-a2k2)x2+2a2k2cx-a2k2c2-a2b2=0,方程有两根,可设为x1>0,x2<0:
x1•x2=(-a2k2c2-a2b2)÷(b2-a2k2)<0,
因-a2k2c2-a2b2必定小于0,故只需:b2-a2k2>0即可,
b2-a2k2=c2-a2-a2k2=a2e2-a2-a2k2=a2(e2-1-k2)>0,
e2-1-k2>0,
即e2-k2>1.
反之当e2-k2>1时,直线l与双曲线C的左右两支都相交,
故直线l与双曲线C的左右两支都相交的充要条件是e2-k2>1,
故选:C.

点评 本题考查必要条件、充分条件、充要条件的判断和应用,解题时要认真审题,注意双曲线的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若cos ($\frac{π}{3}$-α)=$\frac{3}{5}$,则cos($\frac{2π}{3}$+α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果关于x的方程x2+(k+2i)x+3+ki=0有实根,则(  )
A.k≥4或k≤-4B.$k≥\sqrt{2}$或$k≤-2\sqrt{2}$C.$k=±2\sqrt{3}$D.$k=±2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$α∈(0,\frac{π}{2}),β∈(0,\frac{π}{4})$,且tanα=$\frac{cosβ+sinβ}{cosβ-sinβ}$,则下列正确的是(  )
A.$2α-β=\frac{π}{4}$B.$2α+β=\frac{π}{4}$C.$α-β=\frac{π}{4}$D.$α+β=\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.cos2017°=(  )
A.-cos37°B.cos37°C.-cos53°D.cos53°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高点D的坐标为($\frac{π}{8}$,2),由最高点D运动到相邻最低点时,函数图形与x的交点的坐标为($\frac{3π}{8}$,0);
(1)求函数f(x)的解析式.
(2)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求函数f(x)的最大值和最小值以及分别取得最大值和最小值时相应的自变量x的值.
(3)将函数y=f(x)的图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,求函数y=g(x)的单调减区间及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=x+xlnx,若k(x-2)<f(x)对任意x>2恒成立,则整数k的最大值是(  )
A.8B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个直角三角形的周长为2p.
(1)求其斜边长的最小值;
(2)求其直角边的和的最大值;
(3)求其面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若A、B、C、D四人站成一排照相,A、B相邻的排法总数为k,则二项式${({1-\frac{x}{k}})^k}$的展开式中含x2项的系数为$\frac{11}{24}$.

查看答案和解析>>

同步练习册答案