精英家教网 > 高中数学 > 题目详情
定义在区间(0,+∞)上的函数f (x)满足:(1)f(x)不恒为零;(2)对任意a∈R+,b∈R,都有f(ab)=bf(a).
(Ⅰ)求f(1)的值;
(Ⅱ)求证方程f(x)=0有且只有一个实数根;
(Ⅲ)若f(2)>0,试证f(x)是(0,+∞)上的增函数.
分析:(Ⅰ)依题意,令a=1,b=2,即可求得f(1)的值;
(Ⅱ)由(1)知,存在x0∈(0,+∞),使得f (x0)≠0,任取x1∈(0,+∞)且x1≠1,结合题意即可证得方程f(x)=0有且只有一个实数根;
(Ⅲ)对任意的0<x1<x2<+∞,存在实数p1,p2,使得x1=2p1,x2=2p2,且p1<p2,作差判断即可证得结论.
解答:(Ⅰ)解:∵f (ab)=bf (a),
令a=1,b=2,
∴f (1)=f (12)=2f (1),
∴f (1)=0.(3分)
(Ⅱ)证明:由(1)知,存在x0∈(0,+∞),使得f (x0)≠0,显然x0≠1.
任取x1∈(0,+∞)且x1≠1,则
必存在实数q,使得x1=x0q,q≠0.
由(2)知f (x1)=f (x0q)=qf (x0)≠0,
故f (x)=0有且只有一个实数根x=1.(8分)
(Ⅲ)证明:对任意的0<x1<x2<+∞,
存在实数p1,p2,使得x1=2p1,x2=2p2,且p1<p2
f (x1)-f (x2)=f (2p1)-f (2p2
=p1f (2)-p2f (2)
=(p1-p2) f (2)<0,
∴f (x1)<f (x2),
∴函数f (x)在(0,+∞)上单调递增.(14分)
点评:本题考查抽象函数及其应用,着重考查函数单调性的判断与证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在区间(0,a)上的函数f(x)=
x2
2x
有反函数,则a最大为(  )
A、
2
ln2
B、
ln2
2
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断并证明f(x)的单调性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值.
(2)判断f(x)的单调性.
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x)
(Ⅰ)求f(1)的值;
(Ⅱ)若f(
1
2
)<0
,求证:f(x)在(0,+∞)上是增函数;
(Ⅲ)若f(
1
2
)<0
,解不等式f(|3x-2|-2x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足:对?x1,x2∈(0,+∞)恒有f(
x1x2
)=f(x1)-f(x2)
,且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)证明:函数f(x)在区间(0,+∞)上为单调递减函数;
(3)若f(3)=-1,
(ⅰ)求f(9)的值;(ⅱ)解不等式:f(3x)<-2.

查看答案和解析>>

同步练习册答案