精英家教网 > 高中数学 > 题目详情

【题目】要得到函数y= cosx的图象,只需将函数y= sin(2x+ )的图象上所有的点的(
A.横坐标缩短到原来的 倍(纵坐标不变),再向左平行移动 个单位长度
B.横坐标缩短到原来的 倍(纵坐标不变),再向右平行移动 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 个单位长度

【答案】C
【解析】解:∵y= sin(2x+ )= = 答案为C
故选C
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x﹣1
(1)求a的值
(2)若 ,证明:当x>1时,
(3)对于在(0,1)中的任意一个常数b,是否存在正数x0 , 使得:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向右平移 个单位,再把所有点的横坐标缩短到原来的 倍(纵坐标不变),得函数y=g(x)的图象,则g(x)图象的一个对称中心为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点均在圆上.

(1)求圆的方程;

(2)若直线与圆相交于两点,求的长;

(3)设过点的直线与圆相交于两点,试问:是否存在直线,使得以为直径的圆经过原点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= . (I)求函数f(x)的单调区间;
(II)若不等式f(x)> 恒成立,求整数k的最大值;
(III)求证:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )

A. 无论点上怎么移动,异面直线所成角都不可能是

B. 无论点上怎么移动,都有

C. 当点移动至中点时,才有与相交于一点,记为点,且

D. 当点移动至中点时,直线与平面所成角最大且为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点为原点O的抛物线C1的焦点F与椭圆C2 =1(a>b>0)的右焦点重合,C1与C2在第一和第四象限的交点分别为A、B.
(1)若△AOB是边长为2 的正三角形,求抛物线C1的方程;
(2)若AF⊥OF,求椭圆C2的离心率e;
(3)点P为椭圆C2上的任一点,若直线AP、BP分别与x轴交于点M(m,0)和N(n,0),证明:mn=a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数 有以下四个命题:

①对于任意的,都有; ②函数是偶函数;

③若为一个非零有理数,则对任意恒成立;

④在图象上存在三个点,使得为等边三角形.其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+x2(a∈R)在x=﹣ 处取得极值.
(1)确定a的值;
(2)讨论函数g(x)=f(x)ex的单调性.

查看答案和解析>>

同步练习册答案