Ö±ÏßAB¹ýÅ×ÎïÏßx2=2py£¨p£¾0£©µÄ½¹µãF£¬²¢ÓëÆäÏཻÓÚA¡¢BÁ½µã£¬QÊÇÏ߶ÎABµÄÖе㣬MÊÇÅ×ÎïÏßµÄ×¼ÏßÓëyÖáµÄ½»µã£¬OÊÇ×ø±êÔ­µã£®
£¨¢ñ£©Çó
MA
MB
µÄÈ¡Öµ·¶Î§£»
£¨¢ò£©¹ýA¡¢BÁ½µã·Ö±ð×÷´ËÅ×ÎïÏßµÄÇÐÏߣ¬Á½ÇÐÏßÏཻÓÚNµã£¬ÇóÖ¤£º
MN
OF
=0£¬
NQ
¡Î
OF
£»
£¨¢ó£©ÈôpÊDz»Îª1µÄÕýÕûÊý£¬µ±
MA
MB
=4P2£¬¡÷ABNµÄÃæ»ýµÄÈ¡Öµ·¶Î§Îª[5
5
£¬20
5
]ʱ£¬Çó¸ÃÅ×ÎïÏߵķ½³Ì£®
·ÖÎö£º£¨¢ñ£©ÓÉÌõ¼þµÃM£¨0£¬-
p
2
£©£¬F£¨0£¬
p
2
£©£®ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+
p
2
£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx12=2py1£¬x22=2py2£¬Q£¨
x1+x2
2
£¬
y1+y2
2
£©£®ÓÉ
y=kx+
p
2
x2=2py
µÃx2-2pkx-p2=0£®ÓÉΤ´ï¶¨ÀíÄܹ»ÍƵ¼³ö
MA
MB
µÄÈ¡Öµ·¶Î§£®
£¨¢ò£©Å×ÎïÏß·½³Ì¿É»¯Îªy=
1
2p
x2
£¬Çóµ¼µÃy=
1
p
x
£®kNA=y
x1
p
£¬kNB¨Ty
x2
p
£®ÇÐÏßNAµÄ·½³ÌΪ£ºy-
x12
2p
=
x1
p
(x-x1)
£¬ÇÐÏßNBµÄ·½³ÌΪ£ºy=
x2
p
x-
x22
2p
£®ÓÉ
y=
x1
p
x-
x12
2p
y=
x2
p
x-
x22
2p
½âµÃN£¨
x1+x2
2
£¬
x1x2
2p
£©£¬´Ó¶ø¿ÉÖªNµãQµãµÄºá×ø±êÏàͬµ«×Ý×ø±ê²»Í¬£®ÓÉ´ËÄܹ»Ö¤Ã÷
MN
OF
=0£¬
NQ
¡Î
OF
£®
£¨¢ó£©ÓÉ
MA
MB
=4p2
£®ÓÖ¸ù¾Ý
MA
MB
=p2k2
£¬Öª4p2=p2k2£¬¶øp£¾0£¬k2=4£¬k=¡À2£®ÓÉ
NF
=£¨-pk£¬p£©£¬
AB
=(x2-x1£¬y2-y1) =(x2-x1)(1+
x1+x2 )
2p
=£¨x2-x1£©£¨1£¬k£©£¬Öª
NF
AB
=(-pk£¬p)(x2-x1) (1£¬k)=(x2-x1)  (-pk-pk)=0
£¬´Ó¶ø
NF
¡Í
AB
£®ÓÉ´ËÄܹ»Çó³öÅ×ÎïÏߵķ½³Ì£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌõ¼þµÃM£¨0£¬-
p
2
£©£¬F£¨0£¬
p
2
£©£®ÉèÖ±ÏßABµÄ·½³ÌΪ
y=kx+
p
2
£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©
Ôòx12=2py1£¬x22=2py2£¬Q£¨
x1+x2
2
£¬
y1+y2
2
£©£®£¨2·Ö£©
ÓÉ
y=kx+
p
2
x2=2py
µÃx2-2pkx-p2=0£®
¡àÓÉΤ´ï¶¨ÀíµÃx1+x2=2pk£¬x1•x2=-p2£¨3·Ö£©
´Ó¶øÓÐy1y2=
x12x22
4p2
=
p2
4
£¬y1+y2=k£¨x1+x2£©+p=2pk2+p£®
¡à
MA
MB
µÄÈ¡Öµ·¶Î§ÊÇ[0£¬+¡Þ£©£®£¨4·Ö£©
£¨¢ò£©Å×ÎïÏß·½³Ì¿É»¯Îªy=
1
2p
x2
£¬Çóµ¼µÃy=
1
p
x
£®
¡àkNA=y
x1
p
£¬kNB¨Ty
x2
p
£®
¡àÇÐÏßNAµÄ·½³ÌΪ£ºy-
x12
2p
=
x1
p
(x-x1)
¼´y=
x1
p
x-
x12
2p
£®
ÇÐÏßNBµÄ·½³ÌΪ£ºy=
x2
p
x-
x22
2p
£¨6·Ö£©
ÓÉ
y=
x1
p
x-
x12
2p
y=
x2
p
x-
x22
2p
½âµÃ
x=
x1+x2
2
y=
x1x2
2p
¡àN£¨
x1+x2
2
£¬
x1x2
2p
£©
´Ó¶ø¿ÉÖªNµãQµãµÄºá×ø±êÏàͬµ«×Ý×ø±ê²»Í¬£®
¡àNQ¡ÎOF£®¼´
NQ
¡Î
OF
£¨7·Ö£©
ÓÖÓÉ£¨¢ñ£©Öªx1+x2=2pk£¬x1•x2=-p2£¬
¡àN£¨pk£¬-
p
2
£©£®£¨8·Ö£©
¶øM£¨0£¬-
p
2
£©¡à
MN
=(pk£¬0)

ÓÖ
OF
=(0£¬
p
2
)
£®¡à
MN
OF
=0
£®£¨9·Ö£©
£¨¢ó£©ÓÉ
MA
MB
=4p2
£®ÓÖ¸ù¾Ý£¨¢ñ£©Öª
MA
MB
=p2k2

¡à4p2=p2k2£¬¶øp£¾0£¬¡àk2=4£¬k=¡À2£®£¨10·Ö£©
ÓÉÓÚ
NF
=£¨-pk£¬p£©£¬
AB
=(x2-x1£¬y2-y1) =(x2-x1)(1+
x1+x2 )
2p
=£¨x2-x1£©£¨1£¬k£©
¡à
NF
AB
=(-pk£¬p)(x2-x1) (1£¬k)=(x2-x1)  (-pk-pk)=0

´Ó¶ø
NF
¡Í
AB
£®£¨11·Ö£©
ÓÖ|
NF
|=
p2k2+p2
=
5
p
£¬|
AB
|=y1+y2+p=2pk2-2p=10p£¬
¡àS¡÷ABN=
1
2
|NF||AB|=
1
2
¡Á
5
p¡Á10p=5
5
p2
£®
¶øS¡÷ABNµÄÈ¡Öµ·¶Î§ÊÇ[5
5
£¬20
5
]£®
¡à5
5
¡Ü5
5
£¬p2¡Ü20
5
£¬1¡Üp2¡Ü4£®£¨13·Ö£©
¶øp£¾0£¬¡à1¡Üp¡Ü2£®
ÓÖpÊDz»Îª1µÄÕýÕûÊý£®
¡àp=2£®
¹ÊÅ×ÎïÏߵķ½³Ì£ºx2=4y£®£¨14·Ö£©£®
µãÆÀ£º±¾Ì⿼²éÊýÁ¿»ýµÄÈ¡Öµ·¶Î§¡¢ÏòÁ¿Æ½Ðкʹ¹Ö±µÄÖ¤Ã÷¡¢Å×ÎïÏß·½³ÌµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢µ¼ÊýÐÔÖÊ¡¢ÏòÁ¿ÔËËãºÍ¾àÀ빫ʽµÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±ÏßAB¹ýÅ×ÎïÏßx2=2py£¨p>0£©µÄ½¹µãF£¬²¢ÓëÆäÏཻÓÚA¡¢BÁ½µã£¬QÊÇÏ߶ÎABµÄÖе㣬MÊÇÅ×ÎïÏßµÄ×¼ÏßÓëyÖáµÄ½»µã£¬OÊÇ×ø±êÔ­µã.

   £¨¢ñ£©ÇóµÄÈ¡Öµ·¶Î§£»

   £¨¢ò£©¹ýA¡¢BÁ½µã·Ö±ð×÷´ËÅ×ÎïÏßµÄÇÐÏߣ¬Á½ÇÐÏßÏཻÓÚNµã.

        ÇóÖ¤£º£»

   £¨¢ó£©ÈôpÊDz»Îª1µÄÕýÕûÊý£¬µ±£¬¡÷ABNµÄÃæ»ýµÄÈ¡Öµ·¶Î§Îª£Û5£¬20£Ýʱ£¬Çó¸ÃÅ×ÎïÏߵķ½³Ì.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±ÏßAB¹ýÅ×ÎïÏßx2=2py£¨p>0£©µÄ½¹µãF£¬²¢ÓëÆäÏཻÓÚA¡¢BÁ½µã£¬QÊÇÏ߶ÎABµÄÖе㣬MÊÇÅ×ÎïÏßµÄ×¼ÏßÓëyÖáµÄ½»µã£¬OÊÇ×ø±êÔ­µã.

   £¨¢ñ£©ÇóµÄÈ¡Öµ·¶Î§£»

   £¨¢ò£©¹ýA¡¢BÁ½µã·Ö±ð×÷´ËÅ×ÎïÏßµÄÇÐÏߣ¬Á½ÇÐÏßÏཻÓÚNµã.

        ÇóÖ¤£º£»

   £¨¢ó£©ÈôpÊDz»Îª1µÄÕýÕûÊý£¬µ±£¬¡÷ABNµÄÃæ»ýµÄÈ¡Öµ·¶Î§Îª£Û5£¬20£Ýʱ£¬Çó¸ÃÅ×ÎïÏߵķ½³Ì.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±ÏßAB¹ýÅ×ÎïÏßx2=2py(p£¾0)µÄ½¹µã9£¬²¢ÓëÆäÏཻÓÚA¡¢BÁ½µã£¬QÊÇÏ߶ÎABµÄÖе㣬MÊÇÅ×ÎïÏßµÄ×¼ÏßÓëyÖáµÄ½»µã£¬OÊÇ×ø±êÔ­µã.

(1)ÇóÖ¤µÄÈ¡Öµ·¶Î§£»

(2)¹ýA¡¢BÁ½µã·Ö±ð×÷´ËÅ×ÎïÏßµÄÇÐÏߣ¬Á½ÇÐÏßÏཻÓÚNµã£¬

ÇóÖ¤£º£»

(3)ÉèÖ±ÏßABÓëxÖá¡¢yÖáµÄÁ½¸ö½»µã·Ö±ðΪKºÍL£¬µ±=4p2£¬¡÷ABNµÄÃæ»ýµÄÈ¡Öµ·¶Î§ÏÞ¶¨Îª[]ʱ£¬Çó¶¯Ï߶ÎKLµÄ¹ì¼£ËùÐγɵÄƽÃæÇøÓòµÄÃæ»ý.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê¹ã¶«Ê¡¸ß¿¼ÊýѧµÚÈýÂÖ¸´Ï°¾«±àÄ£ÄâÊÔ¾í08£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Ö±ÏßAB¹ýÅ×ÎïÏßx2=2py£¨p£¾0£©µÄ½¹µãF£¬²¢ÓëÆäÏཻÓÚA¡¢BÁ½µã£¬QÊÇÏ߶ÎABµÄÖе㣬MÊÇÅ×ÎïÏßµÄ×¼ÏßÓëyÖáµÄ½»µã£¬OÊÇ×ø±êÔ­µã£®
£¨¢ñ£©ÇóµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©¹ýA¡¢BÁ½µã·Ö±ð×÷´ËÅ×ÎïÏßµÄÇÐÏߣ¬Á½ÇÐÏßÏཻÓÚNµã£¬ÇóÖ¤£º=0£¬¡Î£»
£¨¢ó£©ÈôpÊDz»Îª1µÄÕýÕûÊý£¬µ±=4P2£¬¡÷ABNµÄÃæ»ýµÄÈ¡Öµ·¶Î§Îª[5£¬20]ʱ£¬Çó¸ÃÅ×ÎïÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸