精英家教网 > 高中数学 > 题目详情

【题目】设函数的定义域为,若存在闭区间,使得函数满足:①上是单调函数;②上的值域是,则称区间是函数和谐区间.下列结论错误的是(

A. 函数存在和谐区间

B. 函数不存在和谐区间

C. 函数存在和谐区间

D. 函数)不存在和谐区间

【答案】D

【解析】分析:利用函数单调性的判别方法,逐个选项检验函数是否存在单调区间。若函数上的值域是则方程应该有两个根

详解对于选项A,存在区间[0,2], 上是单调增函数;②上的值域是A正确;

对于选项B,假设存在区间函数在区间上为增函数,

上的值域是可得

解得这与矛盾,故假设错误,所以选项B正确

对于选项C,由函数可得

取区间在此区间上

所以函数在区间上为增函数。

因为 成立

所以函数在区间上的值域为.

所以选项C正确

对于选项D,不妨设,则函数在定义域内为单调增函数。

若存在和谐区间则由

所以是方程的两个根,

是方程的两个根

因为该方程有两个正根,所以存在和谐区间。所以选项D错。

所以选D。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现安排甲、乙、丙、丁、戊5名同学参加厦门市华侨博物院志愿者服务活动,每人从事礼仪、导游、翻译、讲解四项工作之一,每项工作至少有一人参加. 甲、乙不会导游但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是____________.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 线性回归直线至少经过其样本数据点中的一个点

B. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法

C. 在回归分析中,相关指数越大,模拟的效果越好

D. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为1的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列三种说法:

是等边三角形;②;③三棱锥的体积是.

其中正确的序号是__________(写出所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,若函数有四个零点a,b.c,d.则a+b+cd的值是___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体中,点在线段上运动(包括端点),则所成角的取值范围是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)当a=2时,求不等式f(x)<4的解集.
(Ⅱ)当a< 时,对于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为(0,+),若在(0,+)上为增函数,则称为“一阶比增函数”;若在(0,+)上为增函数,则称为”二阶比增函数”。我们把所有“一阶比增函数”组成的集合记为1,所有“二阶比增函数”组成的集合记为2

(1)已知函数,若1,求实数的取值范围,并证明你的结论;

(2)已知0<a<b<c,1的部分函数值由下表给出:

t

4

求证:

(3)定义集合,且存在常数k,使得任取x∈(0,+),<k},请问:是否存在常数M,使得任意的,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案