精英家教网 > 高中数学 > 题目详情
若函数f(x)=-x2+x在[2,2+△x](△x>0)上的平均变化率不大于-1,求△x的范围.
考点:变化的快慢与变化率
专题:导数的概念及应用
分析:利用平均变化率的意义即可得出.
解答: 解∵函数f(x)在区间[2,2+△x]上的增量△y=f(2+△x)-f(2)=-(△x+2)2+(△x+2)-(-22+2)=-△x2-3△x
∴f(x)在区间[2,2+△x]上上的平均变化率为
△y
△x
=-△x-3
∴-△x-3≤-1,
∴△x≥-2,
∵△x>0,
∴△x的范围为(0,+∞)
点评:本题考查了平均变化率的意义及其求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
(x>1)
4sin(πx-
π
3
)(
1
2
≤x≤1)
,则f(x)的最小值为(  )
A、-4
B、2
C、2
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施,某校对高一1班同学按照“国家学生体质健康数据测试”项目按百分制进行了测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(I)请求出70~80分数段的人数;
(II)现根据测试成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成搭档小组.若选出的两人成绩差大于20,则称这两人为“搭档组”,试求选出的两人为“搭档组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x),且当x∈[0,1]时,f(x)=2x2-4x+2,若函数g(x)=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某集团公司举办一次募捐爱心演出,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数x,y(x,y∈{0,1,2,3}),满足|x-1|+|y-2|≥3电脑显示“中奖”,且抽奖者获得特等奖奖金;否则电脑显示“谢谢”,则不中奖.
(1)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(2)若该集团公司望在此次活动中至少获得61875元的收益,则特等奖奖金最高可设置成多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项数列{an}的前n项和,且an和Sn满足:4Sn=(an+1)2(n=1,2,3,…),则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为[a,b].则“函数f(x)在[a,b]上为单调函数”是“函数f(x)在[a,b]上有最大值和最小值”的(  )
A、充分但非必要条件
B、必要但非充分条件
C、充要条件
D、既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正整数的等差数列{an}中,若a1=1,an=51(其中n∈N*),公差为d,则n+d的最小值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为(  )
A、-
4
7
B、
4
7
C、
1
8
D、-
1
8

查看答案和解析>>

同步练习册答案