【题目】已知曲线的方程为:,其中:,且为常数.
(1)判断曲线的形状,并说明理由;
(2)设曲线分别与轴,轴交于点(不同于坐标原点),试判断的面积是否为定值?并证明你的判断;
(3)设直线与曲线交于不同的两点,且为坐标原点),求曲线的方程.
【答案】(1)曲线是以点为圆心, 以为半径的圆;(2)定值,证明见解析;(3).
【解析】
试题分析:(1)将曲线的方程化为,即可得到曲线的形状;(2)在曲线的方程中令,得,进而得到点,计算的三角形的面积,即可判定面积为定值;(3)由圆过坐标原点,且,求得,当时,直线与圆相离,舍去,当时,即可求解圆的方程.
试题解析:(1)将曲线的方程化为,即.
可知曲线是以点为圆心, 以为半径的圆.
(2)的面积为定值.证明如下:在曲线的方程中令,得,
得点在曲线方程中令,得,得点,( 定值).
(3)圆过坐标原点,且,
当时, 圆心坐标为圆的半径为,
圆心到直线的距离,
直线与圆相离,不合题意舍去,时符合题意.
这时曲线的方程为.
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn,且首项a1≠3,an+1=Sn+3n(n∈N*).
(1)求证:数列{Sn-3n}是等比数列;
(2)若{an}为递增数列,求a1的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为,试计算下列事件的概率:
(1)事件;
(2)事件:函数在区间上为增函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为(为参数).
(1)直线过且与曲线相切,求直线的极坐标方程;
(2)点与点关于轴对称,求曲线 上的点到点的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为常数,),且数列是首项为2,公差为2的等差数列.
(1)若,当时,求数列的前项和;
(2)设,如果中的每一项恒小于它后面的项,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧面是矩形,,,,且.
(1)求证:平面平面;
(2)设是的中点,判断并证明在线段上是否存在点,使平面,若存在,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中为实数.
(1)是否存在,使得?若存在,求出实数的取值范围;若不存在,请说明理由;
(2)若集合中恰有5个元素,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com