精英家教网 > 高中数学 > 题目详情

【题目】已知函数为R上的偶函数,当时,恒成立,函数的一个周期内的图像与函数的图像恰好有两个公共点,则 ( )

A. B. C. D.

【答案】A

【解析】

恒成立得恒成立,由当时,;当时,,得函数上单调递减,在单调递增,由函数R上的偶函数,且时,,可得函数上单调递减,在单调递增,且图像关于y轴对称,最小值为,又因为的一个周期内的图像与函数的图像恰好有两个公共点,且最大值为1,所以的最小正周期,且过点,然后可求出解析式.

解:因为恒成立,且的最大值为1

所以恒成立

又当时,;当时,

所以函数上单调递减,在单调递增

又因为函数R上的偶函数,且时,

所以函数上单调递减,在单调递增,且图像关于y轴对称

所以函数的最小值为

因为函数最大值为1

的图像恰好有两个公共点,

则这两个公共点必在

所以函数的最小正周期,所以

过点,即,所以

所以

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,椭圆过点.

(1)求椭圆的方程;

(2)过点的直线(不过坐标原点)与椭圆交于两点,且点轴上方轴下方,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客,提升销售额,每年双十一都会进行某种商品的促销活动.该商品促销活动规则如下:①“价由客定”,即所有参与该商品促销活动的人进行网络报价,每个人并不知晓其他人的报价,也不知道参与该商品促销活动的总人数;②报价时间截止后,系统根据当年双十一该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;③每人限购一件,且参与人员分配到名额时必须购买.某位顾客拟参加2019双十一该商品促销活动,他为了预测该商品最低成交价,根据该购物平台的公告,统计了最近5年双十一参与该商品促销活动的人数(见下表)

年份

2014

2015

2016

2017

2018

年份编号t

1

2

3

4

5

参与人数(百万人)

0.5

0.6

1

1.4

1.7

(1)由收集数据的散点图发现,可用线性回归模型模拟拟合参与人数(百万人)与年份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测2019年双十一参与该商品促销活动的人数;

(2)该购物平台调研部门对2000位拟参与2019年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:

报价区间(千元)

频数

200

600

600

300

200

100

①求这2000为参与人员报价的平均值和样本方差(同一区间的报价可用该价格区间的中点值代替);

②假设所有参与该商品促销活动人员的报价可视为服从正态分布,且可分别由①中所求的样本平均值和样本方差估值.若预计2019年双十一该商品最终销售量为317400,请你合理预测(需说明理由)该商品的最低成交价.

参考公式即数据(i)回归方程:,其中

(ii)

(iii)若随机变量服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】19的九个数字中取三个偶数四个奇数,试问:

(1)能组成多少个没有重复数字的七位数?

(2)(1)中的七位数中三个偶数排在一起的有几个?

(3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?

(4)在(1)中任意两偶然都不相邻的七位数有几个?

(答题要求:先列式,后计算 , 结果用具体数字表示.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中 R.

(1)如果曲线x=1处的切线斜率为1,求实数的值;

(2)若函数的极小值不超过,求实数的最小值;

(3)对任意[1,2],总存在[4,8],使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ADEF与梯形ABCD所在平面互相垂直,,点M是EC的中点.

(1)求证:平面ADEF平面BDE.

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于 两点,直线 分别与轴交于点

(Ⅰ)求椭圆的方程;

(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值.已知函数

(1)设求函数上零点的个数

(2)试探讨是否存在实数使得恒成立若存在的取值范围若不存在说明理由

查看答案和解析>>

同步练习册答案