(1)当时,在上恒成立,求实数的取值范围;
(2)当时,若函数在上恰有两个不同零点,求实数的取值范围;
(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。
解:(1)由a=0,f(x)≥h(x)可得-mlnx≥-x,即
记,则f(x)≥h(x)在(1,+∞)上恒成立等价于.求得
当时;;当时,
故在x=e处取得极小值,也是最小值,
即,故.
(2)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a,在[1,3]上恰有两个相异实根。
令g(x)=x-2lnx,则
当时,,当时,
g(x)在[1,2]上是单调递减函数,在上是单调递增函数。
故
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范围是(2-2ln2,3-2ln3]
(3)存在m=,使得函数f(x)和函数h(x)在公共定义域上具有相同的单调性
,函数f(x)的定义域为(0,+∞)。
若,则,函数f(x)在(0,+∞)上单调递增,不合题意;
若,由可得2x2-m>0,解得x>或x<-(舍去)
故时,函数的单调递增区间为(,+∞), 单调递减区间为(0, )
而h(x)在(0,+∞)上的单调递减区间是(0,),单调递增区间是(,+∞)
故只需=,解之得m=
即当m=时,函数f(x)和函数h(x)在其公共定义域上具有相同的单调性
【解析】略
科目:高中数学 来源:四川省南山中学2012届高三5月考前模拟数学文科试题 题型:044
数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a1+2a2+3a3+…+nan<λ(λ∈R)恒成立时,求λ的最小值;
(Ⅲ)当时,求证:.
查看答案和解析>>
科目:高中数学 来源:四川省模拟题 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
己知在锐角ΔABC中,角所对的边分别为,且
(I )求角大小;
(II)当时,求的取值范围.
20.如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。
(1)求证:平面;
(2)设二面角的平面角为,若,求线段长的取值范围。
21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数 ,
(Ⅰ)若在上存在最大值与最小值,且其最大值与最小值的和为,试求和的值。
(Ⅱ)若为奇函数:
(1)是否存在实数,使得在为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;
(2)如果当时,都有恒成立,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2009-2010学年度新课标高二上学期数学单元测试4 题型:解答题
(理)如图,平面ADEF⊥平面ABCD,ABCD与ADEF均为矩形,且AB:AD:AF=
|
60°.
(1)试确定P点位置;
(2)求二面角P—MC—D的大小的余弦值;
(3)当AB长为多少时,点D到平面PMC的距离等于?
(文)设函数(),其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的极大值和极小值;
(Ⅲ)当时,证明存在,使得不等式对任意的恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com