精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2cos
x
2
,tan(
x
2
+
π
4
)),
b
=(
2
sin(
x
2
+
π
4
),tan(
x
2
-
π
4
)),令f(x)=
a
b

(1)求当x∈(
π
2
3
)时函数f(x)的值域;
(2)是否存在实数x∈[0,π],使f(x)+f′(x)=0(其中f′(x)是f(x)的导函数)?若存在,则求出x的值;若不存在,则证明之.
分析:(1)利用两个向量的数量积公式化简函数f(x)的解析式为
2
sin(x+
π
4
),根据x的范围,求出函数的值域.
(2)先求出 f′(x)的解析式,由f(x)+f′(x)=0 化简可得
2
cosx=0.再由x∈[0,π],可得当x=
π
2
时,
2
cosx=0成立,但此时,tan(
x
2
+
π
4
)不存在,
b
无意义,由此得出结论.
解答:解:(1)f(x)=
a
b
=2cos
x
2
2
sin(
x
2
+
π
4
)+tan(
x
2
+
π
4
)tan(
x
2
-
π
4

=2cos
x
2
 (sin
x
2
+cos
x
2
)-1=sinx+cosx=
2
sin(x+
π
4
).
当x∈(
π
2
3
)时,x+
π
4
∈(
4
11π
12
),sin(x+
π
4
)∈(
6
-
2
4
2
2
).
故函数的值域为 (
3
-1
2
,1).
(2)∵由上可得 f′(x)=
2
cos(x+
π
4
),由f(x)+f′(x)=0,
可得 
2
sin(x+
π
4
)+
2
cos(x+
π
4
)=0. 即
2
cosx=0.
再由实数x∈[0,π],可得当x=
π
2
时,
2
cosx=0成立,但此时,tan(
x
2
+
π
4
)不存在,
b
无意义,
故不存在实数x∈[0,π],使 f(x)+f′(x)=0 成立.
点评:本题主要考查两个向量的数量积公式,两角和差的正弦、余弦公式的应用,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,cos2x),
b
=(sinx,1),令f(x)=
a
b

(I)求f(x)的单调递增区间;
(Ⅱ)当x∈[
π
8
8
]且f(x)=
2
2
,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,2sinx),
b
=(cosx,-
3
cosx)
,函数f(x)=
a
b
g(x)=f(
π
6
x+
π
3
)+ax
(a为常数).
(1)求函数f(x)图象的对称轴方程;
(2)若函数g(x)的图象关于y轴对称,求g(1)+g(2)+g(3)+…+g(2011)的值;
(3)已知对任意实数x1,x2,都有|cos
π
3
x1-cos
π
3
x2|≤
π
3
|x1-x2|
成立,当且仅当x1=x2时取“=”.求证:当a>
3
时,函数g(x)在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,sin2x),
b
=(2sinx,cos2x)(x∈R),且f(x)=|
a
|-|
b
|,则f(x)的最大值
1
1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(2cosx,2sinx),
b
=(cosx,-
3
cosx)
,函数f(x)=
a
b
g(x)=f(
π
6
x+
π
3
)+ax
(a为常数).
(1)求函数f(x)图象的对称轴方程;
(2)若函数g(x)的图象关于y轴对称,求g(1)+g(2)+g(3)+…+g(2011)的值;
(3)已知对任意实数x1,x2,都有|cos
π
3
x1-cos
π
3
x2|≤
π
3
|x1-x2|
成立,当且仅当x1=x2时取“=”.求证:当a>
3
时,函数g(x)在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(2cosx,cos2x),
b
=(sinx,1),令f(x)=
a
b

(I)求f(x)的单调递增区间;
(Ⅱ)当x∈[
π
8
8
]且f(x)=
2
2
,求cos2x的值.

查看答案和解析>>

同步练习册答案