精英家教网 > 高中数学 > 题目详情

(12分)已知函数为奇函数,为常数,
(1)求实数的值;
(2)证明:函数在区间上单调递增;
(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

(1);(3).

解析试题分析:(1)根据f(x)为奇函数,所以f(-x)+f(x)=0恒成立,所以

,
所以,经检验当a=1时,显然不符合要求,
所以a=-1.
(2)证明:设

所以
所以

所以函数在区间上单调递增;
(3) 对于区间上的每一个值,不等式恒成立,
,由(2)知在[3,4]上是增函数,所以当x=3时,取得最小值,最小值为
所以.
考点:函数的奇偶性,复合函数的单调性证明,函数单调性在不等式恒成立问题中的应用.
点评:函数是奇偶性可知f(-x)+f(x)=0恒成立,这是求解析式参数的基本方法.
复合函数单调性的证明可先证明内函数的单调性,再根据外函数的单调性证明即可,同学们要认真体会本小题的证法.
不等式恒成立问题在参数与变量能分离的情况下,最好分离参数,然后转化为函数最值求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

对于函数,若存在x0∈R,使方程成立,则称x0的不动点,已知函数a≠0).
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数
(Ⅰ)判断并证明的奇偶性;
(Ⅱ)求证:在定义域内恒为正。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)函数为奇函数,且在上为增函数,  , 若对所有都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知为此函数的定义域)同时满足下列两个条件:①函数
内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称为闭函数。请解答以下问题:
(1)判断函数是否为闭函数?并说明理由;
(2)求证:函数)为闭函数;
(3)若是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知函数是奇函数:
(1)求实数的值; (2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分) 设函数.
(1)当时,求函数上的最大值;
(2)记函数,若函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案